Hall Ticket Number :	R-19
----------------------	------

Code: 19A37BT

1.

IV B.Tech. I Semester Supplementary Examinations March/April 2023

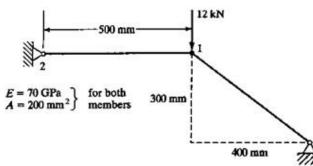
Finite Element Methods

(Mechanical Engineering)

Time: 3 Hours

Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

CO BL Marks UNIT-I a) Explain in detail the fundamental steps involved in FEM for solving a problem. Also mention the applications of FEM. 7M 1 1 b) Differentiate between Plane stress and Plane strain conditions with examples. Write the stress-strain relationship for the both plane stress and plane strain problems. 7M 2


OR

801mm

2. A tapered bar of uniform thickness t = 10 mm as shown in figure. Find the displacements at the nodes by forming into two element model. The bar has a mass density = 7800 kg/m³, the young's modulus E = 2×10^5 MN/m². In addition to selfweight, the bar is subjected to a point load P = 1 kN at its centre. Also determine the element stresses and reaction force at the support.

> 150 mm 300 mm 40 mm 14M UNIT-II

3. Determine the nodal displacements and elemental stresses for the truss shown in figure.

OR

4.	a)	Briefly explain Hermite shape functions for a beam element.	7M	2	2
----	----	---	----	---	---

Derive element stiffness matrix for the beam element. b)

> UNIT-III 2 8M 3

Derive strain displacement matrix of CST element. 5. a)

Page 1 of 2

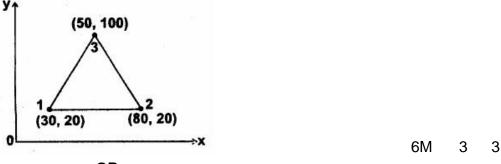
14M

7M

1

1

2


2

3

2

3

b) Evaluate the stiffness matrix for the plane stress element shown in figure. Assume E = 210 x 10³ N/mm², Poisson's ratio υ = 0.25 and element thickness t =10 mm. The coordinates are given in millimeters.

- OR
- 6. Discuss the problem formulation through FEM and stress-strain equations for axisymmetric solids. 14M

UNIT-IV

3

4

4

7M

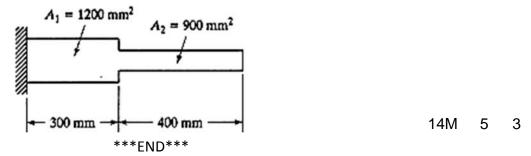
2

2

3

- 7. a) Write short note on the following:
 - (i) Purpose of Iso-parametric elements
 - (ii) Shape functions of four noded quadrilateral element
 - b) Evaluate the integral $I = \int_{-1}^{+1} \left[3e^x + x^2 + \frac{1}{(x+2)} \right] dx$ using one-point and two-point Gaussian quadrature. Compare with exact solution. 7M

OR


8. A composite wall consists of three materials as shown in figure. The outer temperature is $T_o = 20^{\circ}$ C. Convection heat transfer takes place on the inner surface of the wall with $T = 800^{\circ}$ C and $h = 25 \text{ W/m}^2 \circ$ C. Determine the temperature distribution in the wall.

> T₀ = 20°C h, T_o $k_1 = 20 \text{ W/m} \circ \text{C}$ k2=30 W/m°C $k_3 = 50 \text{ W/m}^{\circ}\text{C}$ $h = 25 \text{ W/m}^{2\circ}\text{C}$ T. = 800 °C 0.15 m 0.15 m 14M 3 UNIT-V

- 9. a) What do you mean by consistent and lumped mass matrices? Derive the same for linear bar element.
 - b) Write the procedure to determine the natural frequency of a simply supported beam using lumped mass matrix approach. 7M

OR

10. Determine the Eigen values and Eigen vectors for the stepped bar shown in figure. Take = 7830 kg/m³ and E = $2.1 \times 10^{11} \text{ N/m}^2$.

7M

5

5

2

1

		Hall Ticket Number :									R-19		
	(Code: 19A37ET / 19A37L IV B.Tech. I Semes Noi	ter Su			entary Exar nal Sourc e				n/A	oril 2023		
		Max. Marks: 70 Answer any five full quest			osin	on to ME & E g one questio	-	om ec	ıch unit		ime: 3 Hou 4 = 70 Mark	-	
						• •					Marks	СО	BL
1.	a) b)	Define Solar Constant and Calculate the angle made	•	n the		s Beam and D						CO1	L1
		July4, at 10 .00 AM Solar angle of latitude plus 15°,				al and is pointi				ed at		CO1	L3
2.	a) b)	Explain about Terrestrial a Define the following:	nd Exti	a Tei	-						6M	CO1	L2
	5)	i. Zenith Angle ii. Incide	ent ang	[iii. L JNIT	atitude angle	iv.	Longi	tude ang	gle.	8M	CO1	L1
3.	a)	Explain different methods	of stori								7M	CO2	L2
	b)	What are the important per		•		01	ector	? Expl	ain them	brie	fly. 7M	CO2	L2
	- /				OR			I.			5		
4.	a)	Explain photovoltaic energ	v conv	ersior			d den	nerits.			7M	CO2	L2
	b)	Explain solar water heating	•						d circula	tion.	7M		L2
			<i>y</i> - <i>y</i>		JNIT-								
5.	a)	Explain the constructional	feature		-		e bio	gas pl	ants.		7M	CO3	L2
	,	Explain Wet fermentation						5 1			7M	CO3	L2
	,	I	,		OR								
6.	a)	How are WEC systems cla	ssified	? Dis							8M	CO3	L1
	b)	Describe with a neat ske					ergy	syster	n with i	ts m			
		components.			Ū						6M	CO3	L2
				U	JNIT-	-IV							
7.	a)	Explain the various metho	ds to ex	ktract	geot	thermal energ	у.				7M	CO4	L2
	b)	Explain the power generat	ion fror	n dou	uble o OR		or tida	al enei	rgy utiliz	ation	. 7M	CO4	L2
8.	a)	Explain any two types Way	/e ener	gy co	onver	sion systems.					8M	CO4	L2
	b)	Explain in detail about mir	ni-hyde	-	er pla JNIT						6M	CO4	L2
9.	a)	Explain Seebeck and Thor	npson	effect	ts.						4M	CO5	L2
	b)	Explain the principle of the sketch.	nermoe	lectri	c po	wer generatio	n wit	h the	help of	a ne		CO5	L2
					OR								
10.		Briefly describe the workind diagram?	ng prin	ciple			H ₂ -O ₂	2 fuel (cell with	a ne		CO5	L2
					*	**END***							

Hall Ticket Number : Image: Comparison of the second s	R-19		
Code: 19A372T IV B.Tech. I Semester Supplementary Examinations March / April 2	2023		
Operations Research			
(Mechanical Engineering) Max. Marks: 70 Time:	: 3 Houi	~	
Answer any five full questions by choosing one question from each unit (5x14 = 7 ********		-	
	Marks	СО	BL
UNIT–I			
1. Analyze the following LPP by Big M method.			
Maximize $Z=2X_1+3X_2$			
Subject to the conditions $X_1 + X_2 = 2$; $X_1 + 2X_2 = 8$; $X_1, X_2 = 0$	14M	1	4
OR			
2. a) Explain the characteristics and phases of Operations research	4M	1	2
b) Solve the following Linear Programming Problem by graphical			
method. Maximize $Z=3 X_1+5 X_2$			
Subject to the conditions $X_1 = 4$; $2X_2 = 12$; $3X_1 + 2X_2 = 18$ and			
X ₁ , X ₂ 0	10M	1	3
UNIT–II			

3. Solve the assignment problem (allocate Jobs to the Persons) for minimum total cost.

Persons Jobs	\mathbf{J}_1	J ₂	J ₃	J ₄
0003				
A	20	25	22	28
В	15	18	23	17
С	19	17	21	24
D	25	23	24	24
	OR		1	ı

4. Find the optimum transportation cost.

	D1	D2	D3	D4	Supply
S ₁	5	2	7	3	22
S ₂	4	8	1	6	15
S ₃	4	6	7	5	8
Demand	7	12	17	9	

14M 2 3

14M 2 3

14M

14M

14M

14M

14M

3

3

4

4

5

1

2

3

3

3

1

UNIT–III

5. The cost of a product is Rs. 6100, and its scrap value is Rs. 100. The maintenance cost found from experience is as follows:

Year	1	2	3	4	5	6	7	8
Maintenance Cost (Rs)	100	250	400	600	900	1200	1600	2000

When should the product be replaced?

OR

6. A and B play a game in which each has three notes, a 5 rupee note, a 10 rupee note, and a 20 rupee note. Each selects a note without the knowledge of the others choice. If the sum of the notes is an odd amount, A wins B'S note; if the sum is even, B wins A's note. Find the best strategies for each player and the value of the game.

UNIT–IV

7. In a railway marshalling yard, goods trains arrive at a rate of 30 per day. Assuming that the service time is 36 min. calculate (i) Average number of trains in system, (ii) probability that the queue size exceeds 10, (iii) Expected waiting time in queue. (iv) Average time a customer spends in the system

OR

8. Define Simulation? How do you apply the simulation technique to solve queuing problems?

UNIT–V

9. A manufacturing company purchase 9000 parts of a machine for its annual requirements, ordering one month's usage at a time. Each part costs Rs. 20. The ordering cost per order is Rs.15 and the carrying charges are 15% of the average inventory per year. You have been assigned to suggest a more economical purchasing policy for the company. What advice would you offer and how much would it save the company per year?

OR

10. Solve the following Linear Programming Problem by **DPP method**. Maximize $Z=6X_1+4X_2$ Subject to the conditions $2X_1 + 3X_2 - 100$; $4X_1 + 2X_2 - 120$ and $X_1, X_2 - 0$ 14M 5

END

		Hall Ticket Number :												R	-19		
	C	Code: 19A37CT															
		IV B.Tech. I Sem	este	r Su	pple	men	ntary	у Ех	am	inat	ion	s Mo	arch/	April 20)23		
		ι	Jnco			onal				-	roc	ess					
				()	Nech	anico	al Er	ngir	neer	ing)				T '	0.11.		
		Max. Marks: 70 Answer any five full que	estion	shv	chor	nsina	one	aue	oite	n fro	m e	h	unit (5		3 Hours		
	,		2511011	5 0 9	Chie	-	*****	-	55110				01111 (0		, works	/	
															Marks	СО	BL
						UNIT-											
1.	a)	Compare the process of	•									•••			714	4	2
	b)	energy based and mech Is unconventional mac			•••							•	•		7M	1	3
	b)	machining process? Ju		y pro	ocess	ana	iterna	ale	01 0	omp	leme		COILVE	entional	7M	1	3
		51	- ,			OR											-
2.	a)	Make a comparison be	tweer	n tra	ditiona	al and	unc	onv	entio	nal r	nach	ining	proce	sses in			
		terms of cost, application		•		•				•					7M	1	3
	b)	What do you understar	nd by	the	word	"unco	nven	ntion	al" ii	n uno	conve	entio	nal ma	chining	784	4	2
		processes?													7M	1	3
3.	a)	Select any four process	varial	hlae		UNIT-		nate	rialr	amo	valra	nto in	AIMn	rocass	7M	2	3
э.	a) b)	Discriminate Abrasive													7 111	2	3
	D)	Machining.	Jet i	viaci	ming	, wai			viaci	mmų	ј , Лі	Jiash			7M	2	3
		J				OR											
4.	a)	Describe the apparatu	s, me	tal i	remov	al rate	e, pr	oce	ss p	rincip	oles	and	applica	ation of			
		Water Jet Machining.													7M	2	2
	b)	Quote the limitations in	ultras	onic	1	0									7M	2	3
_						JNIT-			~				<i>(</i> = 0	• • • • • •			
5.	a)	Compare the Chemical respect to their process				VI) with	n Ele	ctro	-Che	mica	al Ma	chini	ng (EC	M) with	7M	3	3
	b)	Explain the process par				and su	rface	a fin	ich ir	СН	М				7M	3	2
	0)		amen			OR	maoc	5 111	1011 11						7 1 1 1	0	2
6.	a)	Discuss the effect of high	gh terr	nper			essu	ure c	of ele	ctrol	yte o	f EC	M proc	ess.	7M	3	3
	b)	Explain in detail about t	he typ	Des o	of mas	kants	used	d in	cher	nical	mac	hinin	g		7M	3	2
					ι	JNIT-I	IV						-				
7.	a)	Explain the process of	f Elec	trica	al disc	harge	grin	nding	g (El	DG)	and	list a	any tw	o of its			
		advantages, limitations	and a	ppli	cation	S									7M	4	2
	b)	List the advantages and	d disa	dvar	-		re – (cut I	EDM						7M	4	3
0		What are the desirable	0 pro	nort		OR odi	alaat	ria	fluid'				ovom	aloo for			
8.	a)	What are the desirabl dielectric fluids. Explain	•	•						GI	/e 50	Jille	exam		7M	4	2
	b)	Sketch and discuss the								s on l	MRR	duri	ng EDI	М			_
		i) Pulse duration on ma					51						5				
		ii) Surface finish and re	lative	elec	trode	wear i	rate								7M	4	3
					l	JNIT–	V										
9.	a)	Discuss the application	s and	limit	tations	s of Pla	asma	a Ma	achin	ing F	Proce	SS			7M	5	3
	b)	Explain the production	of lase	er be			rking	ı prir	nciple	e of L	BM)			7M	5	2
		– 1 – 2 – 2 – 2 – 2 – 2 – 2 – 2 – 2 – 2 –				OR				. .			,				
10.	a)	Explain the thermal fea various types of Lasers		ot l	Laser	peam	mac	chini	ng.	DISCI	uss t	ne p	ertorm	ance of	7M	5	2
	b)	Why is EBM carried out		СШ	m? Fx	plain t	the n	roce		vith a	nea	t ske	tch		7M	5	2
	2)			Jun		-						. 510			, 111	0	2
						•											

Т

H	all Ticket Number :	R-19		
Мс	de: 19A371T IV B.Tech. I Semester Supplementary Examinations March/Apr CAD/CAM (Mechanical Engineering) ax. Marks: 70 Swer any five full questions by choosing one question from each unit (5x14	ne: 3 Ho		
,	*******	Marks		BL
	UNIT–I			
1.	With the help of neat sketches, describe construction, working, advantages, limitations and applications of any two input devices.	14M	1	1 & 2
	OR			
2. a)	A rectangle is defined by its corner points (2,2), (2,8), (10,8) and (10,2). Rotate the rectangle by an angle of 30 counterclockwise and then followed by a scaling with a factor of 2. Solve the above transformations and plot.	8M	1	1 & 2
b)	Compare and contrast conventional design process with CAD process.	6M	1	1 & 2
	UNIT–II			
^{3.} а)	Derive the parametric representation of a Hermite Cubic	10M	0	0
b)	Spline curve. Write a note on surface patch.	4M	2 2	2 2
/	OR		_	-
^{4.} a)	Differentiate B-rep and CSG representation schemes.	10M	2	2
b)	List various wireframe and surface entities.	4M	2	2
5.	UNIT-III			
5.	Write a part program for the object shown below. All dimensions are in mm.			
	$\begin{array}{c c} P6 & \hline P5 & \hline P4 & \hline P3 \\ \hline R20 & \hline R20 & \hline 60 \\ \hline 60 & \hline 60 \\ \hline 80 & \hline 100 & \hline P2 \end{array}$	14M	3	3

OR

		••••			
6.	a)	With the help of a neat sketch, explain the structure of CNC machine tools.	7M	3	3
	b)		7	5	5
	D)	Compare and contrast advantages of computer assisted	7M	•	0
		part programming over manual part programming.	7 171	3	3
_		UNIT–IV			
7.	a)	Discuss on group technology. Justify its significance in			
		the integration of CAD and CAM.	10M	4	3
	b)	Write a brief note on production flow analysis.	4M	4	3
		OR			
8.		Discuss the principles of material handling. Name and			
		describe any four types of material handling devices.	14M	4	3
		UNIT-V			
9.	a)	What are the fundamental concepts in MRP? Explain			
	ч)	them.	7M	5	4
	h)	Explain the method of part inspection using Co-ordinate		0	т
	0)	measuring machine.	7M	5	4
		C C	7 101	5	4
		OR			
10.	a)	Define computer aided quality control. Explain its			
		implementation in detail.	7M	5	4
	b)	Compare online and offline inspection.	7M	5	4
		END			