	Hall Ticket Number :													I	
	Code: 20A37AT	J					I	I		I		R-20			
	IV B.Tech. I Sen	nester S	uppl	emen	ary	Exar	mino	atior	ns M	ay / .	June :	2024			
			-	ration											
	Max. Marks: 70		(Mec	hanico	al Eng	gine	ering	9)			Tim	ie: 3 H	ours		
					****								0010		
	Note: 1. Question Pape			•	•		and F	Part-l	В)						
	 In Part-A, each Answer ALL the 	•					,								
					RT-A										
			(Co	ompulso	ry qu	estio	n)								
1.	Answer <i>all</i> the follow	ing sho	rt an	swer c	ues	tions	3	(5	X 2	= 10	M)		СО	В	L
a)	Show infeasibility in	n LPP ເ	ısing	graph	ical	meth	nod.						1	L	2
b)	What is degenerac	y in trar	nspor	rtation	mod	del?							2	L	1
C)	Explain minimax ar	nd maxi	min p	orincip	les d	of Ga	ame	the	ory.				3	L	1
d)	Briefly explain Ken	doll's n	otatio	n for (Quei	uein	g mo	odel					4	L	1
e)	What is the need of	of dyna	mic p	rograi	nmii	ng a	nd I	how	is i	t diffe	rent f	from			
	linear programming	g.											5	Ľ	1
					RT-B				•		40 0				
	Answer five question	ns by cho	osin	g one q	uest	on fi	rom	eacn	unit	:(5 X	12 = 60	Mark ט Marks	-	`	RI
				UN	IIT—							Marks	O.	,	DL
2.	The standard wei	ight of	a sp	ecial _I	ourp	ose	brio	ck is	s 5	kg aı	nd it				
	contains two basic	c ingred	dients	s B ₁ a	nd B	52. B	1 CO	sts	Rs :	5/- pe	er kg				
	and B ₂ costs Rs 8	-	•	•											
	the brick contains				_										
	kg of B ₂ . Since the			•				•							
	to the price of the the brick satisfying			•		•	ne i	mm	mur	n cos	St OI	12M		4	1.0
	the blick satisfying	y ine ai	JUVE		ons OR).						I Z IVI		1	L3
3.	Solve following I	incor	Drog			nrok	olon		sina	Sim	nlov				
ა.	Solve following L method.	-II I C ai	riog	Iallilli	iig	proc	ЛЕП	ı us	sirig	SIIII	hiex				
	Minimize	$Z = X_1$	-3X ₂	+3X ₃ ,											
	Subject to														
		$3X_1 - X_1$	_	•											
		$2X_1 + 4$			•										
	-	4X ₁ +3	X ₂ +	_	•	_	_								
				X_1, X_2	Χ ₂ , >	(3	0.					12M		1	L3

2.

3.

Code: 20A37AT

UNIT-II

4. Solve the following transportation problem to find minimum transportation cost. Use Vogel's approximation method to find basic feasible solution.

			De				
		Α	В	С	D	Е	Availability
	Χ	3	5	8	9	11	20
Origin	Υ	5	4	10	7	10	40
	Z	2	3	8	7	7	30
Demand		10	15	25	30	40	_
					OR		

12M 2 L3

5. Five wagons are available at stations 1, 2, 3, 4, and 5. These are required at 5 stations I, II, III, IV and V. The mileages between various stations are given by the table below. How should the wagons be transported so as to minimize the total mileage covered.

	1	П	Ш	ľ	V	V
1	10	5	9	1	8	11
2	13	9	6	1	2	14
3	3	2	4	2	1	5
4	18	9	12	1	7	15
5	11	6	14	1	9	10

12M ₂ _{L3}

6. The cost of a new machine is Rs 5000/-. The maintenance cost during the nth year is given by Mn = Rs 500(n-1), where n=1, 2, 3,.... If the discount rate per year is 0.05, after how many years will it be economical to replace the machine by a new one?

12M 3 L3

OR

DI----- D

7. Solve following game using dominance rule to reduce the size of matrix. Given matrix is pay off matrix of player A.

		Player B									
		1	2	3	4						
	1	3	2	4	0						
Dlover A	2	3	4	2	4						
Player A	3	4	2	4	0						
	4	0	4	0	8						

12M 3 L3

Code: 20A37AT

UNIT-IV

- 8. Customers arrive at the First-class ticket counter of a theatre at the rate of 12 per hour. There is one clerk serving the customers at the rate of 30 per hour.
 - i. What is the probability that there is no customer at the counter (i.e. that the system is idle)
 - ii. What is the probability that there are more than 2 customers at the counter?
 - iii. What is the probability that there is no customer waiting to be served?
 - iv. What is the probability that a customer is being served and nobody is waiting?

12M 4 L3

OR

9. The arrival of customers and service times of customers are having the following distribution. Simulate this queueing system for 10 periods by using the following random numbers and calculate mean waiting time and mean queue length.

_	and the same of the same and the same same same same same same same sam												
	Inter arrival time (min)	Probability	Service time (min)	Probability									
	6	0.12	7	0.11									
	7	0.40	8	0.44									
	8	0.35	9	0.33									
	9	0.13	10	0.12									

Random numbers for arrival: 28, 57, 60, 17, 64, 20, 27, 58, 61, 30 Random numbers for service: 19, 07, 90, 02, 57, 28, 29, 83, 58, 41

12M 4 L3

UNIT-I

10. Find the optimal order quantity for a product for which the price breaks are as follows:

Quantity	Unit Cost						
0 < q < 500	Rs 10/-						
500 q < 750	Rs 9.25/-						
750 q	Rs 8.75/-						

The monthly demand for the product is 200 units, storage cost is 2% of the unit cost and cost of ordering is Rs 100/-

12M 5 L3

OR

11. Solve the following LPP by the method of dynamic programming: Maximize $Z = 2X_1 + 5X_2$ Subject to $2X_1 + X_2 + 430$

 $X_1, X_2 = 0$

12M 5 L3

Co	ode: 20A37IT	R-20		
•	IV B.Tech. I Semester Supplementary Examinations May / June	e 2024		
	Power Plant Engineering			
M	(Mechanical Engineering) ax. Marks: 70	Time: 3 H	ours	

No	te: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
	1. Answer all the following short answer questions ($5 \times 2 = 10M$)	CO B		
	a) Write the different types of coals.	CO1 L		
	b) What are the advantages of Dust Collectors?c) What do you mean by Super Charging?	CO2 L		
	d) Examine the necessity of developing the Hydroelectric Power Plant in		_	
	context to our Nation	CO4 L	4	
	e) Explain Tidal Energy.	CO5 L	2	
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$	0 Marks)		
		Marks	СО	BL
	UNIT-I			
2.	Explain Ash Handling System in Thermal Power Plant.	12M	CO1	L2
	OR	4014	201	
3.	What are different circuits of Power Plant, explain with Diagram? UNIT-II	12M	CO1	L2
4.	Illustrate the Travelling Grate Stokers with its functional parameters.	12M	CO2	L3
	OR			
5.	How do you treat the feed water keeping corrosion in to consideration?	12M	CO2	L3
c	UNIT-III Classify different types of Internal Combustion Engine	101/	CO2	1.0
6.	Classify different types of Internal Combustion Engine. OR	I∠IVI	CO3	LZ
7.	Derive the Principles of working of Closed Cycle Gas Turbine with diagram.	12M	CO3	L4
	UNIT-IV			
8.	Describe the classification of dams in Hydro Electric Power Plant.	12M	CO4	L2
	OR			
9.	Classify Nuclear Reactor and explain any one Reactor. UNIT-V	12M	CO4	L2
10.	Demonstrate the Solar collector's principal of working with neat diagram.	12M	CO5	L3
J.	OR		- 55	_5
11.	Examine and comments in your words necessity of controlling abo	ut		
	Pollutants emitted by Power plants.	12M	CO5	L4
	*** End ***			

	Hall Ticket Number :	R-20	,	
C	Code: 20A37QT IV B.Tech. I Semester Supplementary Examinations May / Ju			
	Total Quality Management	116 2024	ř	
٨	(Mechanical Engineering) Max. Marks: 70	Time: 3	Hours	
r	**************************************	11110.0	110013	
N	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
	(Compulsory question)			
1. A	nswer all the following short answer questions $(5 \times 2 = 10M)$	(CO E	3L
a)	Define the term 'Total Quality'.	C	O1 E	L1
b)	How are quality statements prepared?	C	O2 E	L1
c)	What are Continuous Improvement processes in TQM?	C	O3 E	L2
d)	What is the significance of Quality control tools?	C	O4 E	L1
e)	What is the need of ISO 9000 system in TQM?	C	O5 E	L1
	PART-B			
	Answer five questions by choosing one question from each unit (5×12	= 60 Ma	rks)	
		Marks	CO	BL
	UNIT-I			
2.	State the principles of TQM. List out the obstacles associated with TQM implementation	12M	CO1	BL4
	OR			
3.	Define 'Quality costs'. Discuss in brief about the analysis techniques for			
	'Quality costs'.	12M	CO1	BL4
	UNIT-II			
4.	Discuss in detail the contributions of Quality gurus in TQM.	12M	CO2	BL4
	OR			
5.	Discuss the characteristics of a good Quality leader in Organizations. UNIT-III	12M	CO2	BL4
6.	Describe Juran's philosophy for Total Quality Management.	12M	CO3	BL4
	OR			
7.	Explain the significance of PDSA cycle in Quality Management.	12M	CO3	BL4
8.	UNIT-IV How is Six sigma applied in Quality Management? Explain in brief.	12M	CO4	BL5
	OR			
9.	Discuss about Taguchi Quality loss function.	12M	CO4	BL5
0.	UNIT-V What are quality systems? How are they implemented for quality management?	12M	CO5	Bl 4
J.	OR	12111	505	DL4
1.	Discuss in brief about the benefits and requirements of ISO 14000 over ISO			
••	9000 system.	12M	CO5	BL4
	*** End ***			

2.

3.

4.

5.

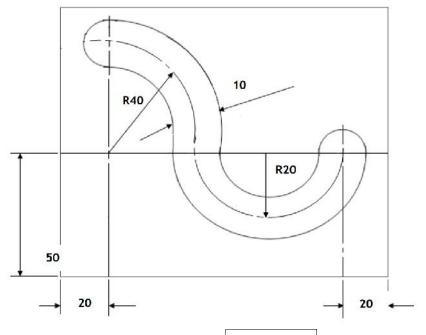
6.

7.

8.

9.

10.


11.

	На	all Ticket Number :															
	Co	ode: 20A363T											1	R	20-5	3	
	CU	IV B.Tech. I Se	mes	ter S	Supp	olen	nen [.]	tary	Exc	m	inatic	ns N	∕ay/J	lune	2024		
							-	/CA									
	Мс	ax. Marks: 70		(Med	cha	nıca	I Eng	jine	erıı	ng)			Tin	ne: 3 H	ours	

	No	te: 1. Question Pape 2. In Part-A, each						`		anc	l Part	-В)					
		3. Answer ALL 1	-							rt-I	В						
					(6)	•		RT-A	4•	,							
	1. A	Answer <i>all</i> the follo	win	g sh		-		ry qu ques				2 =	10M))	СО	BL	
	а	a) Define CAD an	nd C	AM.											CO	l L1	
	b) List the wirefra	me (entit	ies	use	d in	CAE) m	oo	leling				CO2	2 L1	
	C	c) State the use of	of G	90 a	nd N	M06	fun	ctior	ns ii	n C	CNC P	orog	ramm	ning.	CO	3 L2	
	C	d) Define CAPP.													CO ₄	1 L2	
	е	e) What is JIT?													CO	5 L2	
	Δ	Answer <i>five</i> question	ne hi	, cho	nosir	ים טי		RT-B	on f	ror	n each	ı uni	t (5 y	12 – 6	SO Mark	e)	
	<i>,</i> -	answer <i>inve</i> question	iio Dy	CIIC	<i>,</i> 0311	ig o	ile qi	ucsti	0111	101	ii caci	ı uııı	. (3 x	12 - (CO	BL
							UNI	T–I									
2.		Describe lifecyc	le o	fap	oroc	luct	with	n the	e he	elp	of a	nea	t sket	ch.	12M	CO1	L2
								R									
3.	a)	Distinguish betw							•	•						CO1	L2
	b)	Discuss the dat	abas	se s	truc				1 C	om	pute	r gra	aphics	S .	6M	CO1	L2
	,	- 1: 0 .						T–II							014		
4.		Explain the met							•			on.				CO2	
	b)	Discuss the cha	ıracı	eris	tics	Of I	-		e cu	ırv	e.				6IVI	CO2	L2
_		Davis a the never	1					R	:4~	<u> </u>	.b:a 0	ما:اما			4014		
5.		Derive the parar	neur	ic ec	γuaι					Ct	ibic S	piine	e curv	/e	12M	CO2	L3
6	2)	Explain the d	iffor	once	o k			T–III		n	oint_t	n-n-c	oint a	and			
U.	a)	contouring syste			ا ت	J U IV	v C C I	ı IN		μ	טוו ונ־נו	o-pc	711 IL (ariu	6M	CO3	12
	b)	Explain the con-			ada	ptiv	e cc	ntro	l of	· C	NC n	nach	nines.			CO3	
	- ,	, a sa s	- - '					R				- · - ·					

Code: 20A363T

7. Write a part program for the square object (100mm x 100mm) shown in the figure below.

(All dimensions are in mm).

UNIT-IV

- 8. a) Describe production flow analysis.
 - b) Discuss retrieval-type process planning system.

OR

9. a) Discuss the significance of human labour in manufacturing systems.

b) What do you mean by Group Technology? Explain the concept of parts coding and classification.

UNIT-V

- 10. a) Explain the construction and working of a CMM.
 - b) What are benefits of CIMS?

OR

11. a) Discuss the role of computers in quality systems.

b) Explain with the help of neat sketch a non-optical inspection method.

6M CO5 L2

12M co₃ L₃

6M CO4 L2

6M CO4 L2

6M CO4 L2

6M CO5 L2

6M CO5 L2

6M CO5 L2

L2

6M CO4

*** End ***