Hall Ticket Number	:						
Code: 1G681			J. J. J.			R-11 / R-	-13
IV B.Tech. II Se	emester S	Supplemen	tarv Exai	minati	ons Dec	ember 201	7
		d Drawing					
_		•	gineering				
Max. Marks: 70		, ,		,		Time: 3 H	lours
	Answe	er any one qu	estion carr	y 70 M o	arks		
1. Design a Tank s				•	•		tch of t
drawing with a lo Tank Bund top l	•				wing the t	Janei elc.	
Ground level = -		JOIN.					
Level of hard so		~					
Tank bund top v							
Side slopes of ta							
Sill level at sluic		20.10					
Thickness of roc		uico - 15cm					
M.W.L of tank =							
FTL of tank = $+$							
Average water le		500					
Channel below		5011					
		10.00~					
Bed level = + 39		= +40.00m					
Top of bund = $+$							
Bed width = $2m_{e}$		•	2H:1V				
Assume any oth		-					
2. Design details o		gulator is as fo			1		
	Particulars		U/S		D/		
	Full supply a	ADNECOSIC	18 O n	າຈ/ຂ	1501	mu/e	

U/S	D/S		
18.0 m³/s	15.0 m³/s		
12.0 m	12.0 m		
+12.0 m	+12.0 m		
+13.0 m	+13.0 m		
+10.0 m	+10.0 m		
2.0 m	2.0 m		
2:1	2:1		
	12.0 m +12.0 m +13.0 m +10.0 m 2.0 m		

Bligh's coefficient = C= 10

General ground level at the site = +12.0 m

Good soil for foundation is available at +9.0 m

Splayed wingwalls are to be provided.

Design the vent way, Gates, Apron, & Protection works.

Draw to suitable scale, the following views:

- (i) Half longitudinal section and half longitudinal elevation.
- (ii) Half plan at top & half at foundation.
- (iii) Sectional elevation through regulator vent.

Hal	I Ticket Number :											
Cod	le: 1G689										R-11 / R-13	
IV B.Tech. II Semester Supplementary Examinations December 2017												
			_	stress				9				
Ma	w Marks. 70		(Civil E	ngine	ering	g)				Time: 3 Hour	.c
Max. Marks: 70 Time: 3 Hours Answer any five questions							3					
	Al	ll Questio	ons co		Jal mc	-	14 M	arks	eac	h)		
1. a)	Discuss the genera	l principle	es of p	restress	ing the	conc	rete.					4M
b)	What are the advar	ntages an	d limit	ations o	f Prestr	essec	d Con	crete	?			5M
c)	Why high strength concrete?	n concre	te an	d high	tensile	stee	l are	reco	omme	endec	for prestressed	5M
2. a)	Explain the method	ls (i) Pre-	ensio	nina (ii	Post-t	ensio	nina					51M 6M
_: ⊲, b)	Write short notes of	.,		• • •			•					8M
3.	A pre-tensioned be	-			-	•		ressed	d by ^r	12 wi	res, each of 8 mm	
	diameter initially str Estimate the perce											
	relaxation for the fo	-		511655						, 0100	p, shinkaye and	
	Relaxation of steel	stress = 9	90 N/m	nm²								
	E_0 = 201 kN/mm ² E_c = 35 kN/mm ²											
	Creep Co-efficient (()=1.6										
	Residual Shrinkage	e strain =	3 x 10	-4								14M
4.	to support a UDL of 4 kN/m including its self-weight. The beam is prestressed by a straight cable carrying a force of 180 kN and located at an eccentricity of 50 mm. Determine the						14M					
5.	A prestressed cond and 1200 mm dee 1700 N/mm ² with a the top face of the b	p. A teno n effectiv	dons c e pre s	onsists stress of	of 330 910 N	0 mm /mm².	² of s . The	stranc stranc	ds of ds ar	char e loca	acteristic strength ated 900 mm from	14M
6.	The end block of concentric anchora detail the anchorage	post ten ge force	sioneo of 700	l concre kN by a	ete bea a freyss	am 30 sinet s	00 mi	m x 3	300	mm i	is subjected to a	14M
7 a)	Sketch any two for and mention its me	ms of sh					e-stre	essed	conc	crete	composite beams	6M
b)	Elaborate different sketches.	types of	comp	osite co	onstruct	tion o	f pres	stress	ed c	oncre	ete members with	8M
8.	A rectangular conci gyration is prestre eccentricity at mid kN/m over the enti cases, ignoring all I (i) Self weight	essed by span is ire span. osses in	8 wi 75 mn Deter prestre	res of n and z mine th	8 mm ero at :	diam suppo	eter orts. 1	by 40 The b	00 kl eam	N for supp	ces. The tendon orts an UDL of 5	
	(ii) Self weight			mposed	Load							14M

Page 1 of 1

Hall Tic	ket Number :	11/R13
	1G683	_
١v	B.Tech. II Semester Supplementary Examinations December 2017 Remote Sensing and GIS Applications	1
	(Civil Engineering)	
Max. N	Marks: 70 Time: 3 H	lours
	Answer any five questions All Questions carry equal marks (14 Marks each) ********	
1. a)	Explain the principle of photogrammetry with a neat figure.	10M
b)	What are the differences between aerial photographs and maps?	4M
2. a)	Explain the different parts of Electromagnetic spectrum with their uses in	
	satellite remote sensing	10M
b)	Write short notes on spectral reflectance curve.	4M
3.	Detail the following	
	(i) Spatial resolution	
	(ii) Spectral resolution	
	(iii) Radiometric resolution and	
	(iv) Temporal resolution	14M
4. a)	Explain the components of GIS	10M
b)	Define the terms	
	(i) Attribute data	
	(ii) Mosaic	4M
5.	Differentiate raster and vector data models with their advantages and limitations.	14M
6.	Explain the integrated analysis of spatial and attribute data.	14M
7. a)	Explain in detail of generating different thematic maps in watershed prioritization.	10M
b)	List the uses of remote sensing & GIS in different stages of finding the runoff	
	potential indices of watersheds.	4M
8. a)	Define Fluvial Geomorphology.	2M
b)	Explain in detail the role of Remote sensing and GIS in water resources management.	12M

Hall Ticket Number :				
----------------------	--	--	--	--

Code: 1G682

Max. Marks: 70

IV B.Tech. II Semester Supplementary Examinations December 2017

Advanced Structural Engineering

(Civil Engineering)

Time: 3 Hours

14M

14M

14M

14M

R-11 / R-13

Answer any **five** questions All Questions carry equal marks (**14 Marks each**)

- Design an interior panel of flat slab for a live load of 4500 N/m². Drops shall be provided. All panels are 6m×6m. Use M20 concrete and mild steel reinforcements. Use M 25 concrete and Fe 415 steel.
 14M
- Design a bunker to store 300 kN of coal, for the following data. Unit weight of coal = 8340N/m³, angle of repose = 30 degrees. The stored coal is to be surcharged at its angle of repose. Take permissible stress as 140 N/mm².
- 3. A reinforced concrete chimney 100 m high above ground has an external diameter 4m at the top and 5m at the ground level. The thickness of concrete shell varies from 200mm at the top to 400 mm at the bottom. The wind pressure at site may be taken as 2 kN/m². Assuming a modular ratio of 15, design suitable reinforcements in the shell walls.
- 4. A reinforced concrete Intze type water tank is required to store 250,000 litres of water. Height of staging is 13 m above ground level. The tank is supported on six columns. Safe bearing capacity of soil is 150 kN/m². Basic wind pressure is 1.5 kN/m². Adopting M25 grade concrete and Fe 415 steel, Design the top dome , top ring beam and cylindrical wall of the tank.
- 5. A circular tank has an internal diameter of 10m and has maximum height of water as 4m. The walls of the tank are restrained at the base. Determine the values of maximum hoop tension and its location, and the maximum cantilever bending moment.
- 6. Design a counterfort retaining wall for the following data. Height of wall above ground = 8m, Depth of foundation = 1.5m, Safe bearing capacity = 200 kN/m² Unit weight of earth fill= 18 kN/m³ Surcharge angle = 18 degrees, Angle of internal friction for back fill = 30 degrees, Face to face spacing of front counter forts = 2m, Face to face spacing of front counter forts, provided upon ground level = 2m, Co efficient of friction between soil and concrete = 0.55. Use M20 mix and Fe 415 steel.
- 7. A reinforced concrete grid floor of size 9m x 12m is required for an assembly hall. Assuming rib spacing of 1.5m in the short span direction and 2m in the long span direction, design the grid floor. Adopt M25 grade concrete and Fe 415 HYSD bars. Live load is 4 kN/m².
- 8. Explain the steps involved in the design of slabless tread-riser stair case. 14M