Hall Ticket Number :					

R-17

IV B.Tech. II Semester Regular & Supplementary Examinations June 2022

Remote Sensing and GIS Applications

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Explain the basic concepts of aerial Photography	7M	CO1	L1
	b)	Explain the types of stereoscopy	7M	CO1	L1
		OR			
2.	a)	Explain the Parallax measurements for height	7M	CO1	L2
	b)	Discuss about the photomaps and mosaics.	7M	CO1	L1
		UNIT-II			
3.	a)	Explain the advantages and limitations of remote sensing.	7M	CO2	L1
	b)	Discuss the elements involved in remote sensing.	7M	CO2	L1
		OR			
4.	a)	Explain the energy interactions with atmosphere.	7M	CO2	L2
	b)	Explain the types of sensors in remote sensing.	7M	CO2	L1
		UNIT-III			
5.	a)	What is GIS? Explain the components of GIS	7M	CO3	L1
	b)	Explain the fundamental operations of GIS	7M	CO3	L1
		OR			
6.	a)	Explain the Vector data and Raster data	7M	CO3	L1
	b)	Discuss the following			
		i) Digitizing ii) File Management	7M	CO3	L1
7	- \	UNIT-IV	71.4	004	
7.	a)	Explain in brief Visual Analysis Methods in GIS	7M	CO4	L2
	b)	Explain the methods of data storage in GIS.	7M	CO4	L1
		OR	-1.4	004	
8.	a)	Explain the overview of the data manipulation and analysis.	7M	CO4	L1
	b)	Discuss in brief about integrated analysis of the spatial and attribute data. UNIT-V	7M	CO4	L2
9.	a)	Explain about the runoff relations and runoff potential indices of watersheds.	7M	CO5	L2
	b)	Discuss the role of remote sensing and GIS in watershed management.	7M	CO5	L1
		OR			
10.	a)	Explain briefly about identification of sites for artificial recharge structures.	7M	CO5	L1
	b)	Give a brief note on inland water quality survey and management.	7M	CO5	L1
		END			

Hall Ticket Number :						R-17	
_						R-17	
20do: 70605							- 1

IV B.Tech. II Semester Regular & Supplementary Examinations June 2022

Construction Planning and Project Management

	(Civil Engineering)			
Μ	· · · · · · · · · · · · · · · · · · ·	Time:	3 Но	urs
Α	nswer any five full questions by choosing one question from each unit ($5x1$ *********	4 = 70	Mark	s)
		Marks	СО	Blooms
	UNIT-I			Level
1	Compare the advantages and disadvantages of Concrete floor and Terrazzo			
٠.	floor.	14M	CO2	L5
	OR	1 1101	002	LO
2		1 4 1 1	004	1.5
۷.	Explain any three types of stair cases with neat sketches.	14M	CO4	L5
	UNIT-II			
3.	Write short notes on the followings.			
	a). Damp proofing.	3M		
	b). water proofing.	5M		
	c). Termite proofing.	3M		
	d). Fire proofing.	3M	CO2	L1
	OR			
4.	List out the materials used for plastering. Also explain the methods of plastering.	14M	CO1	L1
	UNIT-III			
5.	Describe the objectives of material management. Also explain the functions of			
	material management departments.	14M	CO3	L3
	OR			
6.	Explain the factors affecting cost owning and operating various equipment's.	14M	СОЗ	L3
	UNIT-IV			
7.	Write short notes on the followings.			
	a). Project planning.	4M		
	b). Scheduling.	5M	CO2	
	c). Controlling.	5M		L1
	OR			
8.	Explain the types of Organization.	14M	CO2	L5
	UNIT-V			
9.	Write short notes on the followings.			
	a). Event.	5M		
	b). Activity.	5M		
	c). Dummy.	4M	CO2	L1
	OR			
10.	Describe all the components of CPM process.	14M	CO2	L3

****END****

Hall Ticket Number :						ſ	

IV B.Tech. II Semester Regular & Supplmentary Examinations June 2022

Green Buildings

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	List the green building Materials and explain their uses?	7M	CO1	L1
	b)	Discuss the Important Sustainable features for green building?	7M	CO1	L2
		OR			
2.	a)	Explain, what are the equipment's used to construction of green building in			
		India?	10M	CO1	L2
	b)	List the short comings of green buildings	4M	CO1	L1
		UNIT-II			
3.	a)	Explain the Benefits Experienced in Green Buildings	7M	CO2	L2
0.	b)	Explain in detail about the Green Building Features?	7M	CO2	L2
	D)	OR	/ IVI	002	LZ
4.	a)	Discuss about the Opportunities of Green Building?	7M	CO2	L2
٦.	b)	Describe the green building rating system in India	7M	CO2	L2
	D)	Describe the green ballaing fating system in mala	7 101	002	LZ
		UNIT-III			
5.	a)	Discuss the Maximizing the System Efficiency of a green building.	7M	CO3	L2
	b)	Explain the use of renewable energy sources of green building?	7M	CO3	L3
		OR			
6.		Explain in detail about Eco-friendly captive power generation for factory	14M	CO3	L2
		100-07			
7.		UNIT-IV Explain about the role of HVAC system design in green building?	14M	004	L2
7.		OR	14111	CO4	LZ
8.	2)	Discuss about the Design philosophy of a green building	7M	004	L2
0.	a) b)	Write a short note on Design interventions of a green building.	7 M	CO4	L1
	D)	write a short note on besign interventions of a green building.	/ IVI	CO4	LI
		UNIT-V			
9.	a)	Explain how to reduce the waste during construction of a building	7M	CO5	L2
	b)	List the Reasons for poor IAQ	7M	CO5	L1
		OR			
10.		Explain the Minimum fresh air requirements to avoid use of asbestos in the			
		building	14M	CO5	L2
		*** END ***			

R-17

Hall Ticket Number :										
Code: 7G688	1.	I.	I	<u>L</u>		1	1	1	R-17	

IV B.Tech. II Semester Regular & Supplementary Examinations June 2022

Ground Water Development and Management

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		******			•
			Marks	СО	Blooms Level
1.	a)	With a neat sketch, explain the vertical distribution of Groundwater.	8M	1	L1
	b)	Explain the groundwater in hydrological cycle with labeled diagram.	6M	1	L1
	~,	OR	•	•	
2.	a)	Explain Darcy's law governing Groundwater movement. Discuss it's limitations and validity.	8M	1	L1
	b)	Describe the tracer method of determination of Coefficient of Permeability.	6M	1	L1
		UNIT-II			
3.	a)	Illustrate the assumptions and limitations of Dupit's theory.	6M	2	L2
	b)	Explain Cooper-Jacob method to determine aquifer constants S & T for unsteady radial flow towards well.	8M	2	L2
		OR			
4.	a)	A well of 0.5m diameter penetrate fully into a Confined aquifer of thickness 20m & Hydraulic conductivity 8.2x10 ⁻⁴ m/s. What is the maximum yield expected from this well, if the drawdown in the well is not			
		to exceed 3M.The radius of influence may be taken as 260m.	8M	2	L2
	b)	Explain Thesis method to determine Aquifer constants. UNIT-III	6M	2	L2
5.	a)	Explain Wenner and Schlumberger method of groundwater exploration.	10M	3	L3
	b)	Write a note on Sonic logging.	4M	3	L3
	,	OR			
6.	a)	What is Groundwater exploration? Explain the necessity of Groundwater			
	,	exploration.	7M	3	L3
	b)	Explain the role of borehole data in Groundwater exploration.	7M	3	L3
		UNIT-IV			
7.	a)	Explain the concept of Artificial Recharge.	6M	4	L4
	b)	Describe major objectives and benefits of Artificial Recharge.	M8	4	L4
		OR			
8.	a)	Enumerate different Subsurface practice of Artificial Recharge.	6M	4	L4
	b)	With sketch, explain Ditches and flooding type of Artificial Recharge.	8M	4	L4
		UNIT-V			
9.	a)	What is Sea Water intrusion? Discuss causes for Sea Water intrusion	6M	5	L4
	b)	Discuss the methods of controlling Sea Water intrusion	8M	5	L4
		OR			
10.	a)	What is Conjunctive use of Water? What are the benefits from		_	, .
		Conjunctive use	7M	5	L4
	b)	Explain abatement of Sea Water intrusion	7M	5	L4
		END			

Hall Ticket Number :						

R-17

IV B.Tech. II Semester Regular & Supplmentary Examinations June 2022

Prestressed Concrete

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

	All		o Mai	K3]	
			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Explain with sketches Magnell's system of post tensioning?	8M	01	01
	b)	Discuss why high grade concrete and high strength steel are basic requirements for a PSC member	6M	01	01
		OR			
2.	a)	Explain principles of pre-stressing pretensioning and post tensioning	7M	01	01
	b)	Discuss the analysis of stresses at anchorage by Magnel's method.	7M	02	01
		UNIT-II			
3.		A pretensioned beam, 200 mm wide and 300 mm deep, is prestressed by 10 wires of 7 mm diameter initially stressed to 1200 N/mm2, with their centroids located 100 mm from the soffit. Find the maximum stress in concrete immediately after transfer, allowing only for elastic shortening of concrete. If the concrete undergoes a further shortening due to creep and shrinkage while there is a relaxation of five percent of steel stress, estimate the final percentage loss of stress in the wires using the Indian standard code IS: 1343 regulations, and the following data: Es=210 kN/mm²; Ec = 5700 kN/mm²; fcu = 42 kN/mm²; Creep coefficient	14M	03	03
		() = 1.6; Total residual shrinkage strain = 3 x 10 ⁴ .	14IVI	03	03
	,	OR	45.4	0.4	0.4
4.	a)	What are the different types of losses of prestress	4M	01	01
	b)	A pre tensioned beam 400 mm wide and 600 mm deep is pre stressed by 10 wires each of 10 mm diameter initially stressed to 1000 N/mm² with their centroids located 100 mm from the soffit. Estimate the final percentage loss of stress due to elastic deformation, creep, shrinkage and relaxation using the following data: Relaxation of steel stress = 90 N/mm² Es =210 kN/mm², EC = 35 kN/mm² Creep	4014	00	20
		coefficient = 1.5 Residual shrinkage strain = 2 x 10 ⁻⁴	10M	03	03
_	۵۱	UNIT-III			
5.	a)	A rectangular concrete beam 100mm wide & 250mm deep spanning over 8m is prestressed by a straight cable carrying a effective prestressing force of 250 KN located at an eccentricity of 40mm. The beam supports a live load of 12 kN/m. Find the magnitude of prestressing force with an eccentricity of 40mm which can balance the stresses due to dead load & live load at the soffit of the centre span section	7M	03	03
	b)	A post tensioned beam of 15m of rectangular cross section, 250 mm wide and 475			00
	ω_{j}	·			
		mm deep, is 10 m long and carries an applied load of 10kN/m.UDL on the beam. The effective prestressing force in the cable is 650 kN. The cable is Parabolic with zero eccentricity at the supports and a maximum eccentricity of 150 mm at the			

The cross section of a pre stressed concrete beam used over a span of 10m is 6. 200m wide and 400mm deep. The initial stress in the tendons located at a constant eccentricity of 50mm is 1000N/mm². Find the percentage increase in stress in the wires when the beam supports a live load of 10kN/m. The density of concrete is 24kN/m³. Modulus of elasticity of concrete = 36 N/mm², Modulus of elasticity of $steel = 210kN/mm^2$ 14M 04 03 **UNIT-IV** 7. A Prestressed concrete beam of rectangular cross section 400mm x 800mm deep is Prestressed by 2 post tension cables area 500mm² each initially. Stressed to 1500N/mm². The span of the beam is 8 m, if fck =30 N/mm². Estimate the shear resistance of support section. 14M 04 03 OR 8. Write the design procedure of rectangular section according to IS code 1343. 14M 04 03 UNIT-V a) Describe Magnels method for end block design. 01 01 7M b) Define End block. What is bursting force and end zone reinforcement? 7M 01 01 OR The end block of prestressed concrete is of size 120mm x 1300mm, an effective 10. a) pre stressing force of 300 kN is transmitted. The distribution plate is of size 150mm wide and 150mm deep concentrically loaded at the ends. Calculate the maximum tensile force and bursting tension. Use Guyon's method. 8M 03 03 b) Discuss the stress distribution in end block 6M 04 02

*****END*****