	F	Hall Ticket Number :													7
	Co	ode: 7G686						1		,			R-1	7	
		IV B.Tech. II Se	emest	er R	egu	ular I	Exar	nina	tion	s Jul	y 202	21			
		Advanc			-			-	nee	ering	J				
	M	ax. Marks: 70	(Civil	Eng	ginee	ering)				ті	me: 3	Hour	ç
		nswer any five full questions k	oy cho	posing	g or	ne qu	estic	on fro	mec	ach u	nit (5				-
					****	****									Blooms
			-										Marks	СО	Level
					NIT-										
1.	a)	What are the ideal requirement				•							7M	CO1	L4
	b)	Define: i). Super elevation.		-		t. ii	i). Ca	int de	ficien	cy.			7M	CO1	L1
		iv). Grade compensation		OF											
2.	a)	Find the number of sleepers r	reauire	_		struct	ina a	B.G.	railw	av tra	ack 84	0m			
	<i></i> ,	long, using a sleeper density	•				•			-			7M	CO2	L3
	b)	Define permanent way. What	are th	e idea	al ree	quire	ment	s of p	erma	nent	way?		7M	CO1	L2
				U	NIT-										
3.	a)	Explain various parts of Turno	out wit	h nea	t dia	gram	of Le	eft Ha	nd T	urnou	t.		7M	CO2	L1
	b)	Explain about											714	CO2	1.4
		i) Advantages of tunnelingii) Objects of lining and ventil	ation i	n tuni	nels								7M	002	L1
				OF											
4.	a)	Give the classification of signa	als acc			heir l	ocatio	ons in	stati	on ya	rds ale	ong	71.4	000	1.4
		with suitable sketches.			•					·		C	7M	CO2	L4
	b)	Comparison between Horse s	shoe, e	egg sl	nape	and	segn	nental	tunn	el se	ctions	•	7M	CO3	L2
_	,														
5.	a)	List and explain aircraft chara air ports.	acteris	tics v	hich	affe	ct the	e plan	ining	and	desigr	n of	7M	CO3	L1
	b)	A taxi way is to be designed fo	or oper	ating	a Bo	eing a	aircra	ıft whi	ch ha	is the	follow	/ing			
	,	characteristics. Determine the	turnin	g rad	ius o	fthe	taxiw	ay. W	heel	base	=17.7	0m,	7M	CO5	L5
		Tread of main gear = 6.62 m , and co-efficient of friction = 0.2000 m		of taxi	way	(T)=2	22.5 r	n, turi	n of s	peed	=40kn	nph		000	20
			.3.	OF	2										
6.	a)	Define optimum airport capa	icitv a			on va	rious	facto	ors at	fectir	a ain	oort			
		capacity.	,								5 1		7 M	CO4	L1
	b)	What are the basic assumption	ons ma	ade in	fina	lizing	runv	vay le	ngth	? Exp	lain.		7 M	CO4	L1
					IIT–I	I									
7.	a)	Differentiate between Greek h									-		7M	CO3	L2
	b)	What are the uses of dry and	wet de			at is t	he ro	le of	ware	hous	es?		7M	CO4	L1
0	c)	Differentiate between Netural	and A	OF		"							714	000	10
8.	a) b)	Differentiate between Natural Explain the different types of t						th no:	ot eka	tcho			7M 7M	CO2 CO1	L2 L1
	5)		lempo		NIT-		13 WI	unnee	at SKC				7 101	001	
	9.	What are the theories assoc	ciated			I	of v	vaves	and	tides	s? Wł	nat			
		protective works are needed i	in a ha	rbour	for	safety	y aga	inst ti	des?				14M	CO5	L2
				OF	र										
10.	a)	What is Dredging? Classify th	ne diffe	erent t	ypes	s of d	redgi	ng wo	orks.				7M	CO4	L1
	b)	What are the various services	s that	are re	quir	ed fo	r the	maint	enan	ce of	shipp	oing	7M	CO2	L1
		terminals?	.1.				ala ala ala -1-	-1-							

Hall	Ticket Number :			_
Code	:7G685	F	R-17	
Code	IV B.Tech. II Semester Regular Examinations July	2021		_
	Construction Planning and Project Manager	nent		
May	(Civil Engineering) x. Marks: 70	Tir	ne: 3 Ho) Irs
-	wer any five full questions by choosing one question from each un			
	*******			Blooms
	UNIT–I	Marks	CO	Level
1.	Explain the functions of Lintels, arches and vaults.	14M	CO2	L1
	OR			
2.	Compare the merits and demerits of Pitched roofs and flat roofs.	14M	CO2	L5
2	UNIT-II Mention the constituents of points. Also evaluate their role	1 4 5 4		14
3.	Mention the constituents of paints. Also explain their role. OR	14M	CO1	L1
4.	Give types of paints. Explain the methods of painting old wood and new			
	wood.	14M	CO1	L1
5.	UNIT–III Describe the classification of construction equipment's.	14M	CO3	L5
0.	OR		003	LU
6.	Write short notes on the followings.			
	a). Resource smoothing.	4M		
	b). Resource levelling.	5M		1.4
	c). Establishing workers' productivity.	5M	CO2	L1
	UNIT–IV			
7.	Describe the shortcomings of bar charts and remedial measures.	14M	CO4	L5
	OR			
8.	Compare the merits and demerits of different types of organizations.	1 4 5 4		15
		14M	CO2	L5
	UNIT–V			
9.	Explain the steps involved in the planning for network construction.	14M	CO2	L1
	OR			
10.	Write short notes on the followings.	4M		
	a). PERT. b). Slack.	41M 5M		
	c). Critical path.	5M	CO1	L1
	****END****			

	Hall	Ticket Number :											Г			
C	ode	e: 7G682												R-	17	
		IV B.Tec	h. II Ser	nest	er R	legu	ılar E	xan	ninc	atior	ns Ju	Jly :	202	1		
							uild	•								
٨٨	av	Marks: 70		((Civil	Eng	inee	ring)					Time	3 Hou	irc
		er any five full que	estions b	y cho	posin	g on	e qu	estio	n frc	m e	ach	unit	(5>			
						****	****									Blooms
														Marks	СО	Level
				_		IT–I										
1.	a)	What is green Bui	•	•		•	•				ding?	>		7M		L2
	b)	List the key Requi	sites for (Const		•	Greer	n Buil	ding	?				7M	CO1	L1
`	-)	Evelois is datail al		- f :+		R	الارتقاعات	ما الم	- 0					714	004	
2.	a) b)	Explain in detail al				-		-						7M		L2
	b)	Discuss in detail o	n eco-me	enaly	mate	enais	for gr	een	oulia	ings.				7M	CO1	L2
						T–II										
3.	a)	Explain the Launc	h of Gree	en Bui			na Sv	vstem	าร					7M	CO2	L2
	b)	List out the opport			-				-					7M		 L1
	,			Ū		R	0									
4.	a)	Discuss the Optim	ium Ener	gy Eff	ficien	icy of	a gre	en b	uildir	ng				7M	CO2	L2
	b)	Write brief note or	n													
		i. Water Efficiency	ii. Ener	gy Ef	ficier	су								7M	CO2	L1
					UNI	T–III										
5.		Explain how to Re	duction i	n Ene	rgy [Dema	and fo	r gre	en b	uildin	gs.			14M	CO3	L2
					0	R										
6.	a)	List the requireme	nts to bu	ild a g	reen	h build	ding							7M	CO3	L1
	b)	Explain about Use	e Onsite S	Source	es ar	nd Sir	nks of	a gr	een l	ouildi	ng			7M	CO3	L3
						T–IV										
7.	a)	Discuss about the	passive	coolin			ues ir	n gree	en bi	uildin	gs.			7M	CO4	L2
	b)	List the Key featur	•		0	•		0			0			7M	CO4	L1
	,		0			R										
3.	a)	List the factors she	ould be c	onsid	ered	while	e Sele	ction	of a	ir ha	nding	g un	its	7M	CO4	L1
	b)	Explain about the	Energy n	nodeli	ing o	f a gr	een b	ouildir	ng?					7M	CO4	L2
~	、					T–V									005	
9.	a) b)	What are the Mea		•				•				•		7M	CO5	L1
	b)	Discuss how to im	prove the	enesi		venti R	allon	iii gr	een	build	ng?			7M	CO5	L2
).		Explain the terms,	Indore E	Inviro			quali	ty, To	obac	co sr	noke	e cor	ntrol			
		and Sick building					•	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-			14M	CO5	L2
					*	**EN	ID***	:								

	Hall	Ticket Number :															
C	ode	e: 7G683													R-17	7	
	Jouc	IV B.Tec	h. ll	Sen	nest	er Re	egu	lar E	xan	nina	tion	s Ju	ly 20	21			
									ncre				-				
	4	Mandan 70			((Civil	Engi	neel	ring)				т:			
		Marks: 70 ver any five full que	estior	ns by	cho	-	g one	•	estior	n fror	n ec	ich u	unit (t		me: 3 = 70 N		-
						LINI	IT–I								Marks	со	Blooms Level
1.	a)	Explain the Freyss	inet s	svste	m of			na							7M	01	01
	b)	What is the basic p		-		-		-	ete? E	Expla	in the	e app	licatio	n of		•	•
	,	prestressed concre	•		•					•					7M	01	01
						С	R										
2.	a)	Explain with neat s	sketcl	nes "	Hoye	r's sy	/stem	n of p	reten	sioni	ng?				8M	01	01
	b)	Discuss the load trar	nsfer	mech	anism	n in pr	e-ten	sione	d and	post-	-tensi	oned	memb	ers	6M	02	02
_							T–II										
3.	a)	Discuss the measu loss in case of pos			-			unter	acting	g ela:	stic lo	oss a	nd fric	tion	4M	03	02
	b)	A pretensioned be wires of 8 mm dia. is located at 105n immediately after t level of centroid of shortening due to relaxation of stress stress in steel wire residual shrinkage	Initia nm fr transt the s the s of 5 s. Ta	l stre fer a teel. cree % of ke E	ss to he s llowir If hov p an initia s=21	1000 offit. ng ela wever d sh al stre 0kN/r)N/m Dete astic r, the rinka ess. F	m ² . T rmine short conc ge a Find t	The c e the ening rete i nd th he fir	entro max of c s sub ne ste nal pe	id of a.stre concr ojecte eel is ercer	the s ss in ete c ed to s sub ntage	steel w conc only at addition ojecteo of los	rete the onal d to s of	10M	03	03
						C	R										
4.		A prestressed cond each of 2mm diam initially tensioned Calculate the final after all losses, give Shortening due to shrinkage = 200 x	neter, on t stres en the cree	unif he p s in c e folle ep =	ormly restre concre owing 30 x	v distr esssi ete ar g data k 10-	ribute ng b nd th a : Es 6 mn	ed ov ed w e per = 21 n/mm	er the rith a centa 0 kN/ n per	e sec tota ige lo mm2 N/m	ction. I for oss o & E m2 o	The ce fo f stre c = 32 of str	wires 300 ss in s 2 kN/n ess T	are kN. steel nm2 otal			
5.	a)	of initial stress Pre A PSC beam of 23 is pre stressed by eccentricity of 75m at each quarter sp	stres 80 mr y a nm. T pan p	n wic cable The b points	force le an e car eam s. De	, P = UNI d 450 rying supp termi	300 T–III Omm a fo orts ne th	kN dee orce three	p is u of 6ť conc catior	ised (50 kl centra	over N & ated he p	an sj locat loads ressu	pan of ted at s of 25 ure lin	⁵ 4m an 5 kN e in	14M	03	03
		beam at centre, qu weight of the beam			uppo	n se	Suons	s. ine	giect	uie f	nom		108 10	Sell	7M	03	03

	b)	A concrete beam of symmetrical I section of simply supported span 10 m has a width and thickness of flange 250 mm and 80 mm respectively. The overall depth is 500 mm. The thickness of web is 80 mm. The beam is prestressed by a parabolic cable with an eccentricity of 150 mm below centroidal axis at midspan and concentric at supports. The effective prestress in the cable is 200 kN. The beam supports a liveload of 3 kN/m. Compute the fibre stress at midspan under working load. At what eccentricity the fibre stress at bottom become zero at working load?	7M	03	03
		OR			
6.	a)	A beam of size 500mm x 1000mm is used on simply supported span of 10m. It is provided with a bent tendon having an eccentricity of 100mm at centre and an eccentricity of 50mm upwards at the ends. The dead load of the beam is 10kN/m. Compute the stresses at ends and at mid span.	7M	04	03
	b)	A rectangular concrete beam 100mm wide & 250mm deep spanning over 8m is prestressed by a straight cable carrying a effective prestressing force of 250Kn located at an eccentricity of 40mm. The beam supports a live load of 12 kN/m. Find the magnitude of prestressing force with an eccentricity of 40mm which can balance the stresses due to dead load & live load at the soffit			
		of the centre span section.	7M	03	03
		UNIT–IV			
7.		Write the design procedure of rectangular section according to IS code 1343.	14M	03	03
		OR	1 1101	00	00
8.		A post tensioned beam of 15m of rectangular cross section, 250 mm wide and 475 mm deep, is 10 m long and carries an applied load of 10kN/m. UDL on the beam. The effective prestressing force in the cable is 650 kN. The cable is Parabolic with zero eccentricity at the supports and a maximum eccentricity of 150 mm at the center of span. Calculate the principal stresses at the supports	14M	04	03
		UNIT–V			
9.		The end block of a prestressed concrete beam, rectangular in section, is 120 mm wide and 300mm deep. The prestressing force of 250kN is transmitted to concrete by distribution plate, 120mm wide and 75mm deep, concentrically located at the ends. Calculate the position and magnitude of the maximum tensile stress on the horizontal section through the centre of the end block using the Guyon method. Yeild stress in steel = 250 N/mm2 and design the			
		end block also sketch the reinforcement in the designed block.	14M	05	03
10.	a)	OR Explain the term End blocks. Write the steps involved in the design of end			
	Δ,	blocks by Guyon's method.	7M	01	01
	b)	A pretensioned beam, 160 mm wide by 320 mm deep, is prestressed by four plain wires of 7 mm diameter at an eccentricity of 100 mm. If the cube strength of concrete at transfer is 40 n/mm2, estimate the transmission length at the			
		ends of the pretensioned units using IS: 1343 code provisions	7M	04	03

*****END*****

			R-1	7	
	ou	■ IV B.Tech. II Semester Regular Examinations July 2021			_
		Remote Sensing and GIS Applications			
		(Civil Engineering)			
	-	. Marks: 70	Time: 3		
А	1150	ver any five full questions by choosing one question from each unit (5x *********	14 – 70 r	MAIKS)
			Marks	со	Bloo Le ^v
		UNIT–I			Le
	a)	What are the advantages of aerial photography?	5M	CO1	
	b)	Explain the various types of aerial photographs.	9M	CO1	
	~)	OR	•	001	
	a)	Difference between a map and an aerial photograph.	7M	CO1	
	b)	Explain the Parallax measurements for height	7M	CO1	
	~)			001	
	a)	Explain the basic concept and foundation of remote sensing	7M	CO2	
	b)	Explain the electromagnetic spectrum.	7M	CO2	
		OR			
	a)	Explain energy interaction with earth surface materials.	7M	CO2	
	b)	Explain the elements of visual interpretation techniques	7M	CO2	
		UNIT–III			
	a)	Define GIS. Explain the components of GIS	7M	CO3	
	b)	Explain the theoretical framework for GIS	7M	CO3	
		OR			
	a)	Describe about the attribute data and spatial data	7M	CO3	
	b)	Explain the advantages and limitations of GIS.	7M	CO3	
		UNIT–IV			
	a)	Write a brief note on Computational Analysis Methods in GIS	7M	CO4	
	b)	Explain the advantages of vector data storage	7M	CO4	
		OR			
		Explain the integrated analysis of the spatial and attribute data	14M	CO4	
		UNIT–V			
	a)	Explain the impact of Land use change on stream water quality.	7M	CO5	
	b)	Give a brief note on flood and drought impact assessment and monitoring i	n 7M	005	
		GIS.	<i>i</i> IVI	CO5	
	c)	OR	71.4	005	
	a) b)	How can you monitor water resources management through GIS?	7M	CO5	
	b)	Describe briefly about identification of sites for artificial recharge structures	7M	CO5	