Н	all T	Ficket Number :			7
Сс	ode	: 7G288	R- 1	7	
M	ax.	IV B.Tech. II Semester Regular Examinations July 2021 Energy Auditing and Demand Side Management (Electrical and Electronics Engineering)		3 Hour Marks	
		******	Marks	со	Bloom: Level
1.		UNIT–I What is an energy audit? Explain the significance of energy audit.	14M	CO1	L1
2.		OR Discuss in detail about Energy index, Cost index, pie-charts and load profiles.	14M	CO1	L2
3.		UNIT–II Explain in detail how to conserve electrical energy and explain some of the means to conserve energy.	14M	CO1	L2
4.		OR List the types of energy conservation methods and discuss their merits and demerits	14M	CO1	L1
5.		UNIT–III Describe the constructional details and characteristics of energy efficient motor. What are the factors affecting the efficiency of motor? Write merits and demerits of energy efficient motors. OR	14M	CO2	L3
6.		Discuss in detail about good lighting system design and practice.	14M	CO2	L2
7.		UNIT–IV Explain in detail about data loggers and thermocouples. OR	14M	CO3	L2
3.		Discuss the depreciation methods followed for economical methods with examples.	14M	CO3	L3
9.	a) b)	UNIT–V Define 'demand side management' and state its features. Explain any two DSM techniques in detail. OR	7M 7M	CO4 CO4	L1 L2
0.		Discuss management and organization of energy conservation awareness programs	14M	CO4	L2

	На	Il Ticket Number :	R_17		
	Cod	de: 7G284	R-17		
		IV B.Tech. II Semester Regular Examinations July 2021			
		Fundamentals of HVDC & FACTS Devices			
	Ма	(Electrical and Electronics Engineering) x. Marks: 70 Tim	e:3H	ours	
	-	swer any five full questions by choosing one question from each unit (5x14 =			

			Marks	со	Blooms
		UNIT-I			Level
1.	a)	Compare the power transfer capacities of AC and DC transmission systems			
	a)	when an existing AC line is converted into DC line, with following conditions:			
		i) Same current and insulating level.			
		ii) Same percentage losses and insulating level	7M	1	3
	b)	With the help of neat sketches, explain different types of HVDC links of a			
	,	typical HVDC converter station	7M	1	2
		OR			
2.		Explain the operation of 3-phase 12 pulse converter bridge with neat			_
		diagram? Draw the relevant current and voltage waveforms?	14M	1	3
		UNIT-II		-	_
3.		Explain in detail, the converter control characteristics of HVDC systems.	14M	2	2
4	2)	OR Cive a detailed appount of design apports of the deviale tuned filter	7M	2	e
4.	a)	Give a detailed account of design aspects of the double tuned filter		2	6
	b)	What are the various sources of harmonics generation in a HVDC line?	7M	2	1
F	2)	UNIT-III Evoloin in datail how nower flow in an AC parallel path can be controlled with			
5.	a)	Explain in detail how power flow in an AC parallel path can be controlled with the help of FACTS devices.	7M	3	2
	b)	List out the possible benefits from the FACTS controllers	7M	3	1
	2)	OR		Ũ	•
6.	a)	Distinguish between simultaneous method and sequential method in power			
	,	flow analysis.	7M	3	2
	b)	Explain briefly Modeling of DC/AC converters.	7M	3	2
		UNIT–IV			
7.	a)	Explain how the voltage stability enhancement achieved with series			
		capacitive compensation.	7M	4	2
	b)	With neat wave forms, explain the operating characteristics of the TSSC.	7M	4	2
		OR			
8.		Compare the performance of SVC and STATCOM from the point of view of			•
		transient stability improvement	14M	4	2
0	c)	UNIT-V	714	4	0
9.	a)	Explain the operation of UPFC with relevant diagrams.	7M	4	2
	b)	Explain the control structure of UPFC	7M	4	2
10	2)	OR Evolution the advantages of combined shunt series componenters over			
10.	a)	Explain the advantages of combined shunt-series compensators over individual compensators.	7M	4	2
	b)	Draw the schematic diagram of the Unified power flow controller and write its		-	_
	~)	operating principle?	7M	4	2
		END			

	На	II Ticke	et Number :						1						[
l	Co	de: 7G	286		[J		<u> </u>							R-17		
	00		IV B.Te	ech. II	Seme	ester	Reg	gula	r Ex	ami	natio	ons	Jul	y 20	021			
			Reliabilit			-								r Sy	vster	ms		
	(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours																	
Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks)																		
							:	***	**									Diaama
																Marks	СО	Blooms Level
						UNI												
1.	a)		is meant by le and ordinar			ble a	and e	explai	n dif	ferer	nce k	betw	een	ran	dom	5M	CO1	L1
	b)		n about Poiss	•		with	tha h	oln o	fara	ohe						9M		
	D)	слріан	1 about F 0155		bution			eih o	ryia	5115.						9101	CO1	L2
~	-)	Derive	(h				DR	D '		.		_				-14		
2.	a)		the expression		•											7M	CO1	L2
	b)		are four boxe									•		•				
			fuse is good.			giver					o pro	Joan	Jinty	that	. uio			
			Box.	No	of fuse	s		% of	defe	ctive	fuse	\$						
			No			5		70 01			1000	<u> </u>	_					
			A		200					5			_					
			B		00					20			-					
			C		00					0			-			714		
			D	1	500				1	2						7M	CO2	L5
3	a)	Explai	n how the net	work is	educe	UNI [®]		1 the	Deco	mno	sition	me	thod			7M	CO3	L4
0.	b)	•	em consists o							•				••		7 101	003	L4
	0)		d out the syste								•			,				
		.,	d out the syste		•						-					7M	CO2	L5
			-		-	C	DR											
4.	a)	Discus	s in detail abo	out the o	auses	of fa	ilure	and t	ypes	of fa	ilures	S.				7M	CO4	L4
	b)		ler two identi)52 1	f/h.	lt is			
	- /	desire	d to have a m	ission ti	ne of	30 hr:	s. Co	ompa										
		if these	e units are pla	iced in s	eries a	•		el.								7M	CO2	L5
_		- "				UNI												
5.	a)		absorbing st اls a system ا				-											
			bing state.				P • · · ·							.g .c		7M	CO5	L4
	b)		ler the two c	•	•		-	vstem	with	n nor	n-ider	ntica	al tra	nsiti	onal			
		rates.	The state trai		are as	follo	ws:											
			From state		To st	ate		Tr	ansit	ion s	state							
			1		2).1 								
		-	0		3).2								
			2		1 4).3).5								
		-	3		1).4								
			-		4					D.6								
		State 4	4 is an absorb	oina stat	e. Fin	d the	num	ber o	f time	e inte	rvals	tha	t wo	uld H	nave			

spent in the states of the system before it reaches to the absorbing state.

7M CO2 L5

Page 2 of 2

Code: 7G286

CO6

CO6

L5

L6

- 7M CO5 L5 b) For the following state space diagram as shown in figure. え 2 1 x1 X., x1 x2 $x_1 x_2$ 14 14 ➁ (3) Write the transition intensity matrix 'T' and derive the steady state probabilities and state frequencies. 7M CO2 L3 UNIT-IV 7. a) Discuss about recursive relation for capacitive model building sequential addition method. 7M CO5 L6 b) Explain in detail about the cumulative probability of non-identical generating units. 7M CO5 L5 OR 8. a) Discuss about the concept of unit addition and unit removal with an example. 7M CO5 L2 A generating system consists of two 50 MW units and one 40 MW unit each b) having forced outage rate of 0.06. The peak load specified over a 100 hour period is 150 MW. The load duration curve for this period is a straight line from 100% to 50% load points. What is the value of LOEE for this period? 7M CO2 L5 UNIT-V
- 9. a) Discuss about the evaluation of various reliability indices in radial distribution system with the help of necessary equations. 7M
 - b) Explain about the Common Mode Failures for 4-state model with its complete state space diagram of catastrophic components. 7M
- OR Derive the general expressions for basic probability indices for series 10. a) configurations for 'n' components in series. 7M CO3 L5 b) Write short notes on (i) Temporary and transient failures (ii) Common mode failures 7M CO5 L2

END

Discuss about the reliability evaluation of repairable systems. 6. a)

	На	II Ticket Number :)							1
(Code: 7G283								R-17							
,	cou		h. II Ser	nest	er R	eau	lar E	xan	nina	ition	s Ju	ly 20	21			
IV B.Tech. II Semester Regular Examinations July 2021 Renewable Energy Sources																
(Electrical and Electronics Engineering)																
		x. Marks: 70 wer any five full que	estions by	/ cho	osino	a one	e que	estio	n fro	m ec	ich u	unit (<u>t</u>		ime: 3 H = 70 Mc		
						*****	•					ĩ			,	Blooms
														Marks	СО	Level
					UNI											
1.	a)	Compare and cont	rast the	availa	ability	/ of (conve	entio	nal a	ind n	onco	nvent	iona	l 7M	1	2
	ь)	energy sources	on the w	orkin	a pri	noinle	of a		wa i	ootruur	nont		d fo		I	2
	b)	Write a brief note of measuring solar rad		Orkinę	g pri	ncipie	9 01 8	any t	wo ii	nstrur	nents	s use		7M	1	2
		5			C	DR										
2.	a)	Explain in brief about	ut extrate	rrestr	ial ar	nd ter	restri	al so	lar ra	adiatio	on			7M	1	2
	b)	Elucidate the princip	ole of ope	eratior	n of s	un sł	nine r	ecor	der					7M	1	2
					UNI	T–II										
3.	a)	How are the conc	centrating	colle	ector	s cla	ssifie	ed ba	ased	on	their	opera	ating	•		
		principle?		_				_						7M	2	3
	b)	Describe the proces	ss of phot	ovolta		•••	con	/ersic	on					7M	2	2
4.		Energy storage is ve	arv impor	tant ir	-	DR ed of	solar	ona	rav c	ollact	ion F	- - -	n the	2		
ч.		necessity of energy	• •						•••			•				
		stored												14M	2	4
					UNI	T–III										
5.	a)	Derive the expression					•		-		•	ons.		7M	3	3
	b)	Explicate in brief the	e perforn	nance			ristics	s of w	/ind r	nachi	nes			7M	3	3
6.	a)	Discuss the advanta	ages and	disad		DR DR	of \M	ECS						7M	3	2
0.	a) b)	Explain the different	•			•								7M	3	2
	D)		i modes (•		allon						7 111	5	5
7.		Illustrate in detail t	he therm				/ersio	on ar	nd ha	ow it	is th	ie wo	kinc	1		
		principle behind OT			0,									, 14M	3	4
					C	DR										
8.	a)	Briefly present the c	outline of	tidal e	energ	gy est	imati	on						7M	3	2
	b)	Explain in detail the	factors a	ffecti	ng wa	ave e	nerg	y						7M	3	2
					UNI	T–V										
9.	a)	Differentiate betwee	en anaero	bic a	nd ae	erobio	: dige	estior	1					7M	3	2
	b)	Write a short note	on com	bustic	on cł	narac	terist	ics o	f bio	gas	and	econ	omic		2	2
		aspects of bio gas			ſ	DR								7M	3	2
10.		Describe in detail th	he variou	s Geo			Resou	urces	and	type	s of	wells	used	ł		
5.		for harnessing Geot								.,				14M	3	3
					*	**EN	D***									