	F	all Ticket N	lumber :							_
								R-1	R-17	
	I M	Re Iax. Marks:	II Semester eliability Er (1 70	igineering Electrical ar	d Supplement & Applicatio nd Electronics E psing one questic	ngineerir	ower Syste	ems Time: 3	Hours	
								Marks	со	Blooms Level
				UN	IT–I					
1.	a)	Explain abo	out Probability	density and c	listribution function	ns with an	example.	7M	CO1	L1
	b)	If the probability of failure of the (G) is 0.1 and that of (E) is 0.2, what is the probability of the system working satisfactorily?							CO1	L3
2	a)	OR a) Derive the expression for mean of binominal distribution.							004	1.5
۷.	a) b)						a known to h		CO1	L5
	5)	In a certain manufacturing process, one percent of the products are known to be defective. If 50 items are purchased by a customer, what is the probability of getting two or less number of defectives? Use binomial distribution.							CO1	L3
3.	a)	Explain abo	out reliability fo	unctions R(T)	and H(T) and thei	r relationsh	nip.	7M	CO2	L2
	b)	A component with an MTTF of 100 hrs is known to have exponential distribution. Calculate the reliability of the component for a mission time of 10 hrs. OR							CO1	L3
4.	a)								CO2	L2
	b)) With the help of diagram explain the concept of Bath tub curve.						7M	CO2	L4
				UNI	T–III					
5.	a)	•	o-state Marko	•	Single component ities.	with repai	r) and deriv		CO4	L2
	b)	Consider th	nat in a system	n there are thr	ee states. The sta	te transitio	ns are:			
			From State	To State	Transition State	•				
			1	2	0.2					
			2	3	0.4	_				
			2	1 3	0.3 0.45					
			3	1	0.25					
			č	2	0.12					
	Find the Limiting State Probabilities of the system states.							8M	CO3	L5
OR										
6.	a)							7M	CO5	L4
	b) Discuss in detail about state space diagrams with an example.							CO5	L4	
							Page 1 of 2			

Page 1 of 2

Code: 7G286

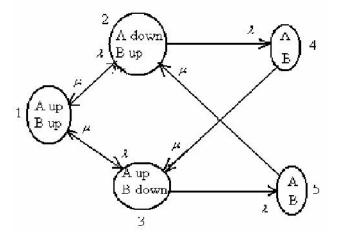
CO3

7M CO5

7M

L2

L3


L4

UNIT–IV

- 7. a) Discuss about the concept of unit addition and unit removal with an example. 7M CO3
 - b) A Power System contains 3 generating units, where units 1, 2 have a capacity of 30MW and unit three has a capacity of 50 MW. The failure rate and the repair rate of each unit is 0 .7 per year and 9.1 per year respectively. Develop the combined capacity outage probability table.

OR

- 8. a) Discuss about the concept of frequency and duration methods.
 - b) A system consists of two identical components with independent failures, but only repair facility. When one component is down, if the other component fails, it may have to wait.

9.

10.

		Calculate the steady state probabilities for this state space diagram as shown in			
		figure.	7M	CO3	L3
		UNIT–V			
).	a)	Explain the weather effects on transmission lines of bulk power system transmission.	7M	CO6	L4
	b)	A generating system consists of two 50 MW units and one 40 MW unit each having forced outage rate of 0.06. The peak load specified over a 100-hour period is 150 MW. The load duration curve for this period is a straight line from			
		100% to 50% load points. What is the value of LOEE for this period?	7M	CO2	L3
		OR			
).	a)	Discuss about load point and system reliability indices in detail.	7M	CO4	L4
	b)	There are 4 components in a system having failure rates of 1.3, 1.4, 1.5 and 1.6 f/yr respectively and repair times of 10, 12, 14 and 16hrs respectively. Find			
		the basic probability indices for series configuration.	7M	CO2	L3
		END			