\square

M.C.A. Il Semester Supplementary Examinations January 2019

Numerical Methods

Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Perform four iterations of the Newton-Rapson method to obtain the approximate value of $(17)^{\frac{1}{3}}$ starting with the initial approximation $x_{0}=2$.
b) Use the Secent method to determine the root of the equation $\operatorname{Cos} x-x e^{x}=0$.

OR

2. Perform two iterations with the Muller method for the equation
$\ln \quad x-x+3=0, x_{0}=1 / 4, x_{1}=1 / 2, x_{2}=1$.

UNIT-II

3. a) Solve the following equations by using the Gauss elimination method. $2 x+2 y+z=1,4 x+2 y+3 z=2, x+y+z=3$.
b) Solve the following equations by using the Gauss seidal method.
$4 x+y+z=2, x+5 y+2 z=-6, x+2 y+3 z=-4$.
OR
4. Find the largest Eigen value and its Eigen vector of $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$ by using power method.

UNIT-III

5. Find the least squares approximation of second degree for the discrete data

x	-2	-1	0	1	2
$f(x)$	15	1	1	3	19

OR
6. Find the correlation coefficient between x and y from the given data:

x	78	89	97	69	59	79	68	57
y	125	137	156	112	107	138	123	108
UNIT-IV								

7. State appropriate interpolation formula which is to be used to calculate the values of $\sqrt{ } 7.5$ from the following data and hence evaluate it from the given data

x	5	6	7	8
$y=\sqrt{ } x$	2.236	2.449	2.646	2.828

OR
8. Use Gauss backward interpolation formula to find $f(32)$ given that $f(25)=0.2707$, $f(30)=0.3027, f(35)=0.3386, f(40)=0.3794$.

UNIT-V

9. Find the value of y for $x=0.4$ by Picard's method, given that $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=0$.
10. Apply the fourth order R-K method to find $y(0.1)$ and $y(0.2)$, given $y^{\prime}=x y+y^{2}, y(0)=1$.
