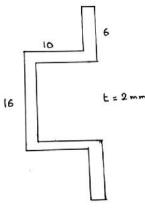
													_				
Hall ⁻	Ticke	t Number :															_
Code	e: 4P	F511	1	1	1	L	1	1	1			J				R-14	
M.Te	ech.	I Semeste	er Re	-			-			-		nina	tior	ns Jo	inua	iry 20	17
				Δ	dvo						าร						
Мах	. Ma	rks: 60			(Ma	cnin	e De	sign)				-	Time:	: 3 Hou	Jrs
		l five units b	by ch	100s	ing a	one	-		n fror	n ec	ach	unit	(5)				
							****	***** UNI	т_і								
1.	a)	Derive the G	Grueb	oler's	equ	ation	of m			plar	nar m	echa	anisi	ms			6M
	b)	State and ex	xplair	n the	Bob	illier'	s the	orm	relate	ed to	infle	ection	i ciro	cle.			6M
								OF	R								
2.		What do you mean by 'inflection circle' and explain Hartmann's method of															
		determining	the i	nflec	tion	circle).			-							12M
2		Determine	• • •			mot		UNI			lar I	inte (- form	* 60*	
3.		Determine mechanism	•							Joup	iei i	шк (БС)	01 2	a loui	Dai	
		Fixed link				•				(AB)) = 6	2.5 m	۱m;				
		Coupler (E	3C) =	: 75 r	nm;			Outp	out lir	k(C[D) =	75 m	m;				
		Angle DA	B = 6	0 ⁰ .													12M
								OF									
4.		State and p	rove	carte	er-hal	l circ	le th			7							12M
5.		Synthesize ((data	rmine	a tha	lenc	ithe (UNIT		four	har	mec	han	ism tı	n nen	orato	
0.		function $y =$	•			-			x						ccurac		
		Chebyshe's	•	•		•										•	1014
		link rotates f		50° IC	0 100	°. AS	sume	OF	•		ne si	nalle	SUM	ik as	100 11		12M
6.		Explain the	Block	n's m	etho	d of	svntk			four	-har	mecl	hani	ism			12M
0.			Diooi	1011			· _	UNIT	-		bui	meer		SIII.			12111
7.	a)	Explain the	pro	pertie	es of	the				Triar	ngle',	whe	en g	guidin	ng a	body	
		through thre	e dis	stinct	poin	ts.											6M
	b)	Explain the				toce	ntre	meth	od (1	[wo	posit	ion) f	for t	he sy	/nthes	sis of	~~~
		four - bar m	ecna	nısm	•			OF	5								6M
8.	a)	Synthesize f	uncti	on v	 v 1.6	hati	NOON			1 v	1	by ve	مامدن	itv-nol	la mat	thod	6M
0.	a) b)	Explain Ove		•								•		• •			OIVI
	0)	generation.	nay c	, 1110	liiou		ynnine	012111	gui	our	bui	moo	, iaii			lotion	6M
								UNI	Г–V								
9.	a)	Explain the	D-H	para	mete	rs of	a pr	ismat	tic –	revol	ute p	olana	r ar	m			6M
	b)	Sketch and	expla	ain S	CAR	A ind	dustr			nanip	oulate	or.					6M
							_	OF									
10.		Obtain the T	ransf	orma	ation	Matri		the e **	end po	oint c	ot a 3	-DOF	- Ar	liculat	ed arr	m.	12M

Hall Ticket Number :											R14
----------------------	--	--	--	--	--	--	--	--	--	--	-----

Code: 4PF512

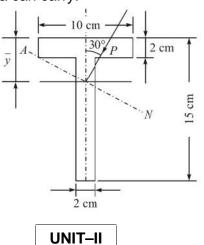
M.Tech. I Semester Regular & Supplementary Examinations January 2017 Advanced Mechanics of Solids

(Machine Design)


Max. Marks: 60

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 12 = 60Marks)


UNIT–I

1. Locate the shear center for the section shown in figure.

OR

2. A simply supported beam of T section 2.5m long carries a central compressive load inclined at 30^o to Y-axis as shown in figure. If the maximum compressive and tensile stress in bending are not to exceed 75Mp_a and 35 Mp_a respectively. Find the maximum load that the bema can carry.

3. A hook of circular section 25mm diameter and radius of curvature of its central axis is 25mm carries a load of 5kN. Calculate the maximum stress in the hook.

OR

4. What are the assumptions made in deriving the Winkler Bach formula for curved beams? Derive an expression for stress distributed in case of large initial curvature.

UNIT–III

5. In the absence of body forces, show that the following stresses satisfy the plane strain stresses formulation relations.

$$\sigma_x = kxy, \quad \sigma_y = kx, \quad \sigma_z = \nu kx(1+y)$$

$$\tau_{xy} = -\frac{1}{2}ky^2, \quad \tau_{xz} = \tau_{yz} = 0, \quad k = \text{constant}$$

OR

6. Using the polar strain-displacement relations, derive the strain-compatibility relation.

$$\frac{\partial}{\partial r} \left(2r \frac{\partial e_{r\theta}}{\partial \theta} - r^2 \frac{\partial_{e\theta}}{\partial r} \right) + r \frac{\partial e_r}{\partial r} - \frac{\partial^2 e_r}{\partial \theta^2} = 0$$
UNIT-IV

7. Derive the expression for stretching of a prismatic bar when it is subjected to its selfweight.

OR

8. Derive the expression for pure bending equation of rectangular plates.

UNIT-V

9. Derive the expression for r, c for discs of uniform strength.

OR

10. Prove that the maximum circumferential stress in rotating discs with a central pine hole is twice the value for a solid disc of the same dimension.

Hall	Ficke	et Number :	R14
Code	: 4PI	EC14	
M.Teo	ch.	I Semester Regular & Supplementary Examinations January 20	17
		Computational Methods	
Max. Answe		(Common to Machine Design & Structural Engineering) ks: 60 five units by choosing one question from each unit (5 x 12 = 60 Marks	
	-	*****	,
1.		UNIT–I The system of equations $x^2y+y^2=10$; $xy^2+x^2=3$ has a solution near x=0.8 and y=2.2. Perform two iterations by Newton's method to obtain the root	12M
		OR	
2.		Compute the value of $I = \int_{0}^{1} \frac{dx}{1+x^{2}}$ using the trapezoidal rule with h=0.5, 0.25	12M
		and 0.125. Then obtain a better estimate using Romberg's method.	
		UNIT–II	
3.		Give the boundary value problem $x^2 y''+xy'-y=0$, $y(1)=1$, $y(2)=0.5$, apply the cubic spline method to determine the value of $y(1.5)$.	12M
		OR	
4.		Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x=0, y=0, z=3,	
		y=3 with u=0 on the boundary and mesh length 1 unit.	12M
		UNIT-III	
5.		Given the differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ and the boundary conditions	
		u(0)=u(5, t)=0 and $u(x, 0) = 25x^2 - x^4$. Take h= 1 and k = ½	12M
		OR	
6.		Solve the equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ subject to the following conditions u(0, t) =0,	
		$u(1, t) = 0, t > 0 \text{ and } \frac{\partial}{\partial t} u(x, 0) = 0, u(x, 0) = \sin^3 x, 0 x 1$	12M
7			
7.		Solve the boundary value problem defined by $y^{11}-x=0$, and $y(0)=0$, $y^1(1)=-1/2$ by the Rayleigh Ritz method.	12M
		OR	
8.		Solve the Poisson equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k, 0 \prec x, y \le 1$ with u=0 on the	
		boundary C of the region S.	12M
		UNIT-V	
9.	a)	Write a short notes on 2D plots in MATLAB	6M
	b)	Discuss about script files in MATLAB	6M
40			
10.		Write a MATLAB programme to solve simultaneous system of linear equations numerically by Gauss elimination method.	12M

	Hal	I Ticket Number : R14	
(Cod	e: 4PF513	
	M.	Tech. I Semester Regular & Supplementary Examinations January 2017 Fracture Mechanics (Machine Design)	
Ą		time: 3 Hours ver all five units by choosing one question from each unit (5 x 12 = 60 Marks) *********	
	,	UNIT-I	
1.	a)	Explain the ductile fracture with neat sketches	6M
	b)	Describe time dependent crack growth and damage tolerance OR	6M
2.	a)	Explain effect of material properties on fracture	6M
	b)	Define fracture. Explain the fracture at elevated temperature	6M
		UNIT-II	
3	a)	With a neat sketches explain in detail different types loading modes	5M
	b)	Explain Griffith energy balance in fracture mechanics	7M
		OR	
4.		A plate of maraging steel has a tensile strength of 2000 MPa. Calculate the reduction in strength caused by a crack in this plate with a length $2a = 3.1$ mm oriented normal to the tensile direction. Given: Young's modulus $E = 210$ GPa surface tension ge $= 2.1$ J/m2, plastic energy per unit crack surface area gp $= 2.1 \times 10^4$ J/m ² . Critical stress	
		intensity factor $Kc = sc pa$	12M
Б	2)	UNIT–III Explain briefly crack tip opening displacement	6M
5.	a) b)	Show that the occurrence of plastic constraint in actual structural parts leads to more	OIVI
	0)	safety when using the COD design curve.	6M
		OR	
6.	a)	Plot how the critical stress intensity Kc depends on the thickness and explain this	6M
	b)	A steel plate with a through thickness crack of length 2a = 22mm is subjected to a stress of 400 Mpa normal to the crack. If the yield strength of the steel is 1550Mpa, what is the plastic zone size and the stress intensity factor for the crack. Assume that the plate	
		is infinitely wide.	6M
7	2)	UNIT-IV	бМ
7.	a) b)	Explain the different stages of fatigue crack initiation and propagation	6M 6M
	b)	Explain limitations of fracture mechanics under fatigue loading OR	OIVI
8.	a)	Explain S-N curves	6M
0.	b)	A long, 50 mm diameter rod is manufactured from a material of 600 MPa yield and 42 MPa m toughness. The rod is circumferentially cracked, while tensioned by a force, P. What is the maximum safe load if the crack depth is 2 mm? If the load is 220 kN, what crack depth is tolerable?	6M
		UNIT-V	
9.	a)	Explain creep curve	6M
	b)	Write short note on Stress rupture test	6M
		OR	
10.	a)	Write a short notes on creep deformation maps.	6M
	b)	Larson –Miller parameters	6M

I	Hall	Ticket Number : R14	
С	ode	: 4PF514	
٨	1.Te	ch. I Semester Regular & Supplementary Examinations January 2017 Materials Technology	
Ν	۸ax.	(Machine Design) Marks: 60 Time: 3 Hours	
		ver all five units by choosing one question from each unit (5 x 12 = 60 Marks)	
		******* UNIT–I	
1.	a)	Explain grain boundary strengthening with suitable diagram	6M
	b)	Interpret the mechanism of plastic deformation of crystals	6M
	-,	OR	-
2.	a)	How do you quantify of work hardening? Explain it with the help of Burgers vector.	6M
	b)	Compare Elasticity in metals and polymers	6M
		UNIT–II	
3.	a)	Formulate strain and strain rate on plastic behavior of UT specimen	6M
	b)	Differentiate between deformation of crystalline and non crystalline materials.	6M
		OR	
4.	a)	Define the following mechanical properties with reference appropriate graphs:-strength, toughness, fatigue and creep.	6M
	b)	Explain the selection process of material for a typical bearing	6M
		UNIT–III	
5.	a)	Abbreviate HSLA Steel and summarize its mechanical properties.	6M
	b)	When are Ni and Ti aluminides are preferred?	6M
		OR	
6.	a)	Elaborate the classification of Steels.	6M
	b)	What are the advantageous and applications of TRIP steel?	6M
7.		UNIT-IV	6M
7.	a) b)	What are shape memory alloys and what are they used for? What are the purpose the following materials:-	OIVI
	D)	(i) Dielectric elastomers (ii) Piezoelectric	6M
		OR	-
8.	a)	Examine properties and applications of engineering polymers.	6M
	b)	Give at least three examples to following adhesives:	
		(i) Natural adhesive (ii) Synthetic adhesives	
		UNIT–V	
9.	a)	What are industrial applications of ceramics? Summarize it.	6M
	b)	Prioritize SiC based ceramics over Si3 N4 ceramics.	6M
		OR	
10.	a)	Outline Composites based on the metal matrix.	6M
	b)	Describe the purpose of mechanics of composite materials	6M

Hall Ticket Number : R14							
Code: 4PF515							
M.Tech	M.Tech. I Semester Regular & Supplementary Examinations January 2017						
	Tribology						
	(Machine Design)						
Max. Mc							
Answer a	Il five units by choosing one question from each unit (5 x 12 = 60 Marks)						
	UNIT-I						
1.	Explain the terms Topography of surfaces and its properties measurement.						
	OR						
2.	Discuss the theory of sliding friction and rolling friction.						
	UNIT–II						
3.	What are the types of wear? Explain with neat sketches.						
	OR						
4.	Discuss the terms surface treatment and surface modifications.						
	UNIT–III						
5.	Explain the regimes of lubrication with a neat sketch.						
	OR						
6.	Discuss the types of lubricants and their physical properties.						
	UNIT–IV						
7.	Derive an expression for two dimensional Reynolds equation and its assumptions.						
	OR						
8.	Derive an expression for load capacity and friction calculations in Hydrodynamic						
	bearing.						
	UNIT–V						
9.	Derive Reynolds equation elasto hydrodynamic lubrication.						
	OR						
10.	Explain the Rolling contacts of elastic solids and contact stresses.						
