$\square$

# M.Tech. I Semester Regular \& Supplementary Examinations January 2017 

 Advanced Digital Signal Processing
## UNIT-I

1. a) Define and Classify Discrete Time Systems. Check whether the following is a Linear, Casual system or not $Y[n]=4 X[n]+8 X[n-1]$.
b) State and Prove any Two properties of CTFT

## OR

2. a) Derive Complementary Transfer Function of LTI Discrete-Time System.
b) Briefly write about the following
i) Digital Two Pairs ii) Band Limited Discrete Time Signal

## UNIT-II

3. a) Describe in detail about the design of IIR filter using Least Square Design method 6M
b) With an example explain the Tunable IIR Digital filter.

OR
4. a) Explain the design of an IIR filter using Pade approximation method 6M
b) Differentiate between IIR and FIR filters.

## UNIT-III

5 Design and Draw the Flow Graph for Computation of DFT with $\mathbf{N}=12$ by using the following algorithms
i) Cooley Tuckey Method
ii) Prime Factor algorithm

OR

| 6. a) | Explain in detail about Computation of DFT using Chirp Z-Transform | 6 M |
| :--- | :--- | :--- |
| b) | Discuss about fast DFT algorithm based on index mapping | 6 M |
| 7. | Design and explain the following methods for Power Spectrum Estimation |  |
| i) Weltch Method |  |  |
| ii) Burg Method |  |  |
| iii) Bartlett Method |  |  |

iii) Bartlett Method

## OR

8. a) Write a short note on the parametric spectrum estimation techniques. 6M
b) Compare the nonparametric power spectrum estimation techniques.

## UNIT-V

9 a) Briefly Discuss about Decimator for sampling Rate conversion
b) Draw and explain the structure of Direct-form realization of FIR filter in sampling rate conversion by factor I/D.

10 a) Explain in detail about Sampling Rate Conversion by a rational factor I/D 6M
b) Discuss about Oversampling A/D converter.

## Code: 4PA313

M.Tech. I Semester Regular \& Supplementary Examinations January 2017

## Digital Communication Techniques

Time: 3 Hours
Max. Marks: 60
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )
*********

## UNIT-I

1. a) Explain about i) Markov Chains ii) Circular Random Processes 8M
b) Summarize on the different Signal space Concepts. 4M

OR
2. a) Discuss and plot the probability density functions of Gaussian, Rayleigh and
Rician distributions.
b) Classify and explain the different types of Random Processes 8M

UNIT-II
3. Describe the Implementation an Optimum Receiver for AWGN Channel 12M

OR
4. Explain about Phase and Quadrature Amplitude Modulation in detail. 12M

UNIT-III
5. a) Illustrate the concept of Multi dimensional signaling. 7M
b) Sketch and explain the block diagram of Generalized RAKE demodulator. 5 M

OR
6. Explain how frequency-selective channel can be modeled by using Tapped-
Delay model.

UNIT-IV
7. Discuss in detail about the Nyquist Criterion for design of Band-Limited Signals
to avoid Inter symbol Interference (ISI).

## OR

8. a) Outline the concept of Linear Equalization.
b) Describe how Mean-Square-Error (MSE) criterion can used for optimization of Equalizer co-efficients.9M
UNIT-V
9. 9 Explain the concept of Modulation and Demodulation in an OFDM System. 12M

OR
10. a) What is the role of cyclic Prefix appending to reduce Inter Symbol Interferance.
b) Sketch and explain the block diagram of Filter bank implementation of OFDM receiver.

## Code: 4PA311

M.Tech. I Semester Regular \& Supplementary Examinations January 2017

# Digital System Design 

(DECS)
Time: 3 Hours
Max. Marks: 60
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )

> *********

## UNIT-I

1. a) Explain how ROMs and PLAs are used in designing sequential circuits
b) Explain how does the ASM chart differ from a software flow chart?

OR
2. a) Implement the logic function ' $F$ ' using $R O M$
$F=A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C$
b) Draw an ASM chart of JK flip-flop. Realize it using SR flip flop and required gates

## UNIT-II

3. a) Explain how signature analysis is used for testing bridging faults?
b) Describe the algorithmic steps involved in PODEM.

## OR

4. a) With an example, explain the transition count testing method.
b) What is the significance of Kohavi Algorithm? Explain how it detects multiple faults in a two-level networks with a simple example

## UNIT-III

5. An unknown three state machine with two input symbols 0 and 1 is provided with the input sequence $X$, and it responds by producing the output sequence $Z$, as shown below:

| x | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

Show that this experiment is sufficient to identify the machine uniquely.

## OR

6. a) Explain design of fault detection experiment 6 M
b) Explain the concept of Machine identification with an example

## UNIT-IV

7. a) Describe the advantages of PLA minimization and folding.
b) Design a 3 bit BCD to grey code converter and realize the circuit using PLA and then show that how folding will reduce the number of cross points given on the PLA.
8. Discuss in detail about the types of faults in PLA with example.

## UNIT-V

9. a) Explain the following with examples:
(i) Flow table (ii) State reduction.
b) With respect to an asynchronous sequential machine, explain about minimal closed covers.

## OR

10. a) Write note on minimum closed covers and hazards 6M
b) Explain races and cycles in sequential circuits.

| Hall Ticket Number : |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Code: 4PB311

## M.Tech. I Semester Regular \& Supplementary Examinations January 2017 Embedded System Concepts

( Common to DECS, Embedded Systems, VLSISD )
Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )
$* * * * * * * * *$

## UNIT-I

1. a) What is meant by Embedded system? with a suitable example, Explain soft and hard embedded systems
b) What are the challenges in design of an Embedded system? ..... 4M
OR2. a) With a suitable diagrams, Explain architecture of kernel6M
b) What you mean by System-on-Chip(SoC)? How will the definition of an embedded system change with a SoC? ..... 6M
UNIT-II3. a) Discuss about various memories used in Embedded systems.6M
b) What are the parameters taken into account for the selection of a processor for designing embedded systems? ..... 6M
OR4. a) Describe the role of RAM in embedded systems?6M
b) What is the necessity of DMA? Explain operation of it. ..... 6M
UNIT-III
2. a) Explain architecture of IEEE -488 bus ..... 8M
b) Difference between OS and RTOS? ..... 4M
OR
3. a) Explain Round Robin and function Queue scheduling algorithms ..... 8M
b) Explain architecture of RS-232 Serial bus ..... 4M
UNIT-IV
4. a) Discuss various steps involved in the development phase of an Embedded system. ..... 8M
b) What are the issues in the design of an Embedded system? ..... 4M
OR8. Explain software and Hard ware tools for design of an Embedded system.
UNIT-V
5. Describe the design aspects of smart cards12M
OR
6. With a suitable diagrams, explain the design issues of Automatic Chocolate vending Machine ..... 12M

## M.Tech. I Semester Regular \& Supplementary Examinations January 2017

## Modelling \& Synthesis through Verilog HDL

( Common to DECS \& VLSISD)
Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )

## UNIT-I

1. a) List the operands and expressions used in Verilog.
b) Construct a $2 \mathrm{i} / \mathrm{p}$ NOR gate using behaviour model Verilog code. Also write
the test bench for the above program.
6 M

OR
2. Elaborate the various Data Types and Strings used in Verilog with suitable examples.

## UNIT-II

3. a) Write briefly about the Propagation Delay using built-in constructs.
b) Design a 2 -to- 1 multiplexer by using UDP. The select signal is $S$, inputs arei0,
i1, and the output is Out. If the select signal $S=x$, the output Out is always 0 .
If $S=0$, then out $=i 0$. If $S=1$, then out $=i 1$.

OR
4. a) Discuss briefly about Initialization of Sequential Primitives.
b) Write short notes on the effects of Inertial Delay.

## UNIT-III

5. a) Write Verilog program for 2 input CMOS NOR gate using switch level model
b) What are ambiguous signals? Explain briefly.

## OR

6. a) Explain in detail the Bi-Directional Switches, its importance with a suitable
example.
b) What is Procedural Assignment? Write a sample program using Procedural
Continuous Assignments and Procedural Timing Controls.

## UNIT-IV

7. Explain the importance of the Don't cares, Tri-State outputs and the Tri-state
Buffers?

## OR

8. Discuss in detail about the Horizontal and Vertical partitioning in Digital
Design with example.
9. a) Discuss briefly about the synthesis of Nets. $\begin{aligned} \text { UNIT-V } & 6 \mathrm{M}\end{aligned}$
b) Write briefly about the synthesis of Register variables. 6 M

## OR

10. Explain in detail the synthesis of Multi-cycle operations?

# M.Tech. I Semester Regular \& Supplementary Examinations January 2017 Wireless Communications 

(DECS )
Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )
UNIT-I

1. a) Explain the evolution of the Mobile Radio Communications
b) Explain how Personal Area Network (PAN) provided by Bluetooth Standard

## OR

2. a) Explain different types of WLL Techniques in detail.
b) Compare between 3G W-CDMA, 3D cdma2000 and 3G TD-SCDMA Standards

## UNIT-II

3 a) Define Brewster Angle and derive the expression for the same
b) With a neat diagram explain in detail Single Knife-edge and Multiple Knife-edge Diffraction model

## OR

4 a) Illustrate the Impulse Response Model of a Multipath Channel
b) With neat diagram explain Direct RF Pulse System

## UNIT-III

5 a) Derive Selection Diversity Improvement
b) Assume five branch diversity is used, where each branch receives an independent Rayleigh fading signal. If the average SNR is 20 dB , determine the probability that the SNR will drop below 10 dB . Compute the mean SNR. Compare this with the case of a single receiver without diversity.

## OR

6 With neat diagram explain in detail Direct Sequence Spread Spectrum (DS-SS) transmitter and receiver

## UNIT-IV

7 a) List the features of FDMA in detail. Explain the Nonlinear Effects in FDMA
b) In US AMPS, 416 channels are allocated to various cellular operators. The channel between them is 30 kHz with the guard band of 10 kHz . Calculate the spectrum allocation given to each operator

## OR

8 a) Evaluate the Capacity of Cellular CDMA
b) In IS-95 CDMA system, if $\mathrm{W}=1.25 \mathrm{MHz}, \mathrm{R}=9600 \mathrm{bps}$, and $\mathrm{N}=14$ users
(a) Calculate $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$
(b) When no voice activity is there, calculate $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\circ}$ for omnidirectional antennas (c) If voice quality $=3 / 8$ and three sector antennas are used, calculate the total number of users' cell

## UNIT-V

9 Evaluate the Capacity of frequency selective fading channels

## OR

10 Illustrate Narrow Band MIMO model in detail

