H	Hall	Ticket Number : R14	
C	ode	:: 4PC312	-
\sim	1.Te	ch. I Semester Regular & Supplementary Examinations January 2017 Analog IC Design	
		(VLSI System Design) Marks: 60 Time: 3 Hours er all five units by choosing one question from each unit (5 x 12 = 60 Marks) ***********************************	
		UNIT-I	
1.	a)	Draw the circuit of a Source flower with current mirror to supply bias current and obtain the expression for gain and output impedance.	
	b)	Write short notes on Source- Degenerated current mirrors	
	D)	OR	
2.	a)	Deduce the small signal model for an n-channel MOSFET taking into account the body effect.	
۷.	a) b)	Explain common source amplifier with current mirror active load.	
	D)	UNIT-II	
3.	a)	Explain about Folded cascade op amp	
	b)	Deduce the necessary condition that ensures zero input-offset voltage for a two stage op amp.	
	,	OR	
4.		Draw the circuit of Current feedback operational amplifier and derive an expression for gain and slew rate	
		UNIT-III	
5.	a)	Explain the operation of switched capacitor gain circuit.	
	b)	Explain about Biquad filters.	
		OR	
6.	a)	Compare and contrast CMOS and BICMOS sample and hold circuits and their performances	
	b)	What is a switched capacitor filter? List important features of it. How does it differ from analog filter?	
		UNIT-IV	
7.	a)	Draw and explain the Nyquist rate D/A converter using binary scaled converter.	
	b)	Explain successive approximation A/D converter with a neat circuit diagram	
		OR	
8.	a)	Discuss about the following A/D Converters	
		i. Two Step Converter.	
	L .\	ii. Pipelined converter	
	b)	Compare different types of A/D Converters	
9.	a)	UNIT-V Discuss in detail the noise shaped delta sigma modulator	
J.	a) b)	Derive the component values of 1st order continuous time filter	
	IJ)	OR	
		UK	

b) Draw block diagram of oversampling converter without noise shaping and explain

10. a) Write brief notes on second order Bandpass oversampling modulator.

6M

6M

Hall Ti	icket Number :														R14
Code	4PC313	1	I		L	1	I	1	1.	I.	Į.	1			
М.Те	ch. I Semeste	r Re	gul		-	ople al IC			-	kam	nina	tions .	Januar	y 20	17
	Marks: 60							•				SISD)	Time:	_	
Answe	r all five units b	y cr	noos	ing (one	que ****	stior ****	tror	n ec	ach i	JNİt	(5 x 12	2 = 60 N	1arks	;)
							IIT–I					_			
1	Evaluating the	robu	stne	ss of	the	CMO	S Inv OR	/erte	r and	l ana	lyze	its Stat	ic behav	ior.	12M
2	What is the Po	wer,	Ene	rgy a	nd E	nerg	_	lay o	f CM	os I	nver	ter?			12M
						UN	IIT–II								
3	Explain Static	СМО	S de	esign	ng o	f con		ationa	al log	ic ga	ites.				12M
4	Explain the pip	elinir	ng te	chnic	que f	or op	OR itimiz	ation	of s	eque	ential	circuits	S.		12M
						UN	IT–II	I							
5	What is the imp	pact	of Te	echno	ology	scal	ing c	n CN	ИOS	Inve	rter r	netrics'	?		12M
6	Explain the love and reduced care							of v	oltag	e sc	aling	, switcl	hing acti	vity	12M
						UN	IT–I\	/							
7	What is the bas	sic n	eed (of de	sign	rules		plain	CM	OS d	esigı	n rules.			12M
8	Explain the effort	ects	of sh	eet r	esist	ance	OR s an	d var	ious	сара	ıcitar	nces on	CMOS		12M
	J				Г										
9	Design a modi	fied E	3ooth	n's m	ultip		IIT–V								12M
					-		OR								
10	Explain the pov	wer c	dissir	atior	occ	urre	d in C	CMO	S me	mori	es.				12M

Hall Ticket Number :														R14
Code: 4PB311														
M. Took I Competer	Doc	~l~	ur 0	Cur	مام	~ ~ r	tan	, F.,	ami	n a ti	000	lanua	n, 0	017

M.Tech. I Semester Regular & Supplementary Examinations January 2017 Embedded System Concepts

(Common to DECS, Embedded Systems, VLSISD)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

1.	a)	What is meant by Embedded system? with a suitable example, Explain soft and hard embedded systems	8M
		embedded systems	Olvi
	b)	What are the challenges in design of an Embedded system?	4M
		OR	
2.	a)	With a suitable diagrams ,Explain architecture of kernel	6M
	b)	What you mean by System-on-Chip(SoC)? How will the definition of an embedded system change with a SoC?	6M

UNIT-II

3.	a)	Discuss about various memories used in Embedded systems.	6N
	h)	What are the parameters taken into account for the selection of a processor for	

What are the parameters taken into account for the selection of a processor for designing embedded systems?

OR

- 4. a) Describe the role of RAM in embedded systems? 6M
 - b) What is the necessity of DMA? Explain operation of it.

UNIT-III

- 5. a) Explain architecture of IEEE -488 bus
 - b) Difference between OS and RTOS?

OR

- 6. a) Explain Round Robin and function Queue scheduling algorithms
 - b) Explain architecture of RS-232 Serial bus

UNIT-IV

- 7. a) Discuss various steps involved in the development phase of an Embedded system.
 - b) What are the issues in the design of an Embedded system?

OR

8. Explain software and Hard ware tools for design of an Embedded system.

UNIT-V

9. Describe the design aspects of smart cards

12M

12M

6M

6M

8M

4M

8M

4M

8M

4M

10. With a suitable diagrams, explain the design issues of Automatic Chocolate vendingMachine

OR

Н	all T	icket Number : R14
Сс	de:	4PC315
М	.Tec	ch. I Semester Regular & Supplementary Examinations January 2017 FPGA Architectures and Applications (Common to VLSISD and Embedded Systems)
		Marks: 60 Time: 3 Hours rall five units by choosing one question from each unit (5 x 12 = 60 Marks) ***********************************
		UNIT-I
1.	a)	What are the features of ROM, PLD, PAL devices? Mention some of their applications.
	b)	With the help of sketches describe the Cypres FALSH 370 Device Technology.
		OR
2.	a)	Explain about Altera's – Max 5000/7000 Series CPLDs.
	b)	Describe the Architecture of Lattice PLSI's –3000series.
2	۵)	UNIT-II Describe the Programming technologies of a general EDCA
3.	a) b)	Describe the Programming technologies of a general FPGA. Explain about Routing Architecture of FPGAs.
	D)	OR
4.	a)	Give the design flow and Technology mapping for any general FPGA.
	b)	Draw and explain the simplified block diagram of CLB of a generalized FPGA.
	,	UNIT-III
5.	a)	With a neat schematic, give the architecture of Xylinx 4000 FPGA.
	b)	Explain the architecture of ACTEL's ACT-1,2,3 and their Speed Performance.
		OR
6.	a)	Compare Alteras' Flex 8000 and 10000 series FPGAs
	b)	Explain about the AT & T's - ORCA (Optimized Reconfigurable Cell Array)
		UNIT-IV
7.	a)	Explain about the Top Down design approach of a state machine.
	b)	Explain how realization of state machine chart using PAL is done.
		OR
8.	a)	Explain the Basic Concepts and Properties of Petrinetes for State Machines.
	b)	Explain the implementation of Traffic Light Controller using Finite State Machine.

UNIT-V

- 9. a) Give an example and explain for a system design of Architectures Centered around non-registered PLDS.
 - b) Describe the use of ASMs in One Hot Design.

OR

- 10. a) Explain the System Level Design of a parallel Controller.
 - b) Explain the System Level Design of One Hot Method.

		,				_	
Hall Ticket Number :							R14
Code: 4PC314							

M.Tech. I Semester Regular & Supplementary Examinations January 2017

Modelling & Synthesis through Verilog HDL

(Common to DECS & VLSISD) Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks) UNIT-I 1. a) List the operands and expressions used in Verilog. 6M b) Construct a 2 i/p NOR gate using behaviour model Verilog code. Also write the test bench for the above program. 6M Elaborate the various Data Types and Strings used in Verilog with suitable 2. examples. 12M UNIT-II 3. a) Write briefly about the Propagation Delay using built-in constructs. 4M b) Design a 2-to-1 multiplexer by using UDP. The select signal is S, inputs arei0, i1, and the output is Out. If the select signal S = x, the output Out is always 0. If S = 0, then out = i0. If S = 1, then out = i1. 8M 4. a) Discuss briefly about Initialization of Sequential Primitives. 6M b) Write short notes on the effects of Inertial Delay. 6M UNIT-III a) Write Verilog program for 2 input CMOS NOR gate using switch level model 6M b) What are ambiguous signals? Explain briefly. 6M OR a) Explain in detail the Bi-Directional Switches, its importance with a suitable 6. example. 6M b) What is Procedural Assignment? Write a sample program using Procedural Continuous Assignments and Procedural Timing Controls. 6M **UNIT-IV** 7. Explain the importance of the Don't cares, Tri-State outputs and the Tri-state **Buffers?** 12M OR 8. Discuss in detail about the Horizontal and Vertical partitioning in Digital Design with example. 12M UNIT-V a) Discuss briefly about the synthesis of Nets. 6M 9. b) Write briefly about the synthesis of Register variables. 6M OR

Explain in detail the synthesis of Multi-cycle operations?

10.

12M

Hall	Ticke	et Number :													
Code	Code: 4PC311														
M.Tech. I Semester Regular & Supplementary Examinations January 2017														<u> </u>	
			3 3 3		_	recl		-						,	
		•	Commor							& VL	SISD)			
		ks: 60		•			. 1*				- *1	<i>(</i>		e: 3 Ho	
Answ	er a	ll five units k	by choos	sing (one	que ****	STION ****	1 troi	n ed	acn	UNIT	(5 X I	2 = 6	u Mark	.S)
							UNI	T–I							
1.	a)	Explain how	gm & gd	s are	dep	end	on fa	brica	tion	para	mete	rs			6M
	b)	Determine Z	Z_{PU}/Z_{PD} for	r an	NMC	OS in	verte	r Dri	ven l	oy an	othe	r NMC	S inv	erter	6M
							OF	₹							
2.	a)	Compare b	etween C	MOS	S Te	chnol	ogy a	and E	BiCM	OS 1	echr	nology	,		6M
	b)	Explain abo	ut the late	ch-up	o in	СМС	S Ci	rcuits	6						6M
							UNI	T–II							
3.	a)	Draw and ex	xplain the	stick	k dia	gram	of C	MOS	thre	e inp	ut N	AND g	gate		6M
	b)	Explain abo	ut the De	esign	rule	s and	l Pro	cess	para	mete	ers				6M
							OF	2							
4.	a)	What are the	e wires ar	nd via	as aı	nd ho	w to	cons	truct	then	n?				6M
	b)	Explain abo	ut layout	desig	gn to	ols									6M
							UNIT	Γ – ΙΙΙ							
5.	a)	Design the			ment	ary p	ullup	and	pull	dow	n ne	twork	for t	ne logic	
		expression	`	,											6M
	b)	Explain abo	ut the do	mino	logi	С									6M
							OF								
6.	a)	Explain the	•	•				rconi	nect						6M
	b)	Explain abo	ut alterna	te ga	ite C	ircuit			7						6M
-	,						UNIT		_						01
7.	a)	Explain abo			_		rks \	vith a	an ex	amp	le				6M
	b)	Explain abo	ut power	optin	nızat	ion		_							6M
_	,						OF								
8.	a)	Explain the network test				•	nd ak	oseva	ability	/ rel	ated	to c	ombii	national	6M
	h)		•				amn	ما							6M
	b)	Explain abo	ut Siiiiuidi	uoii V	vili č	an ex	.amp		7						OIV
9.	a)	What is one	-phase ai	nd tw	o-nh	lase (J vste	ms?	Com	pare f	hem		6M
٠.	~,		p55 ai		- 1-,			ອ ⊂	,			_{[-} t]			

OR

10. a) Explain system-on-chip concept using platform based design

b) Explain about off-chip Connections

b) Explain about design validation and testing

6M 6M

6M