Code: 4PC314

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016 Modelling & Synthesis through Verilog HDL

(Common to DECS & VLSISD)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 12 = 60 Marks)

UNIT-I Explain about various Data types available in Verilog 12M 1. OR 2. Explain about various Operators available in Verilog. 12M UNIT-II 3. Explain about Models of Propagation Delays in Verilog. 12M OR 4. Explain about Inertial Delay and Transport Delay in Verilog. 12M UNIT-III 5. Explain about Procedural Timing Control and Synchronization. 12M OR 6. Explain about Constructs for Activity Flow Control in Verilog. 12M **UNIT-IV** Explain about HDL-based Synthesis of Combinational Logic in Verilog. 7. 12M OR 8. Explain about Synthesis of Finite State Machine (FSM) in Verilog. 12M **UNIT-V** Explain about Synthesis of Expressions and Operators for language constructs. 9. 12M OR

10. Explain about Synthesis of Assignments for language constructs 12M

Hall Ticket Number :												R14
----------------------	--	--	--	--	--	--	--	--	--	--	--	-----

Code: 4PA312

M.Tec	ch. I	Semester Regular & Supplementary Examinations Feb/Mar 201 Advanced Digital Signal Processing	16
14000		(DECS)	
Max.		ks: 60 five units by choosing one question from each unit (5 x 12 = 60 Marks)	
7 (113 00 C	i uii		
		UNIT-I	
1.	a)	Discuss in Detail about the Sampling Rate Alteration devices	6M
	b)	Explain the classification of LTI Discrete Time systems in Detail	6M
		OR	
2.		Discuss	
		i. Operations performed on sequence	
		ii. Energy Density spectrum of <u>a discrete</u> time sequence	12M
		UNIT-II	
3.	a)	Explain the digital sine-cosine Generator?	12M
	b)	Explain the types of Linear-phase FIR Transfer Functions?	
		OR	
4.		Discuss in detail least square Design Methods with example	12M
_			
5.		Explain the Computation of DFT approach for Linear Filtering using Chirp Z- transform	12M
		OR	
6.	a)	Compute Split Radix FFT algorithms.	6M
	,	Explain about DFT computation over a narrow frequency band	6M
	2)	UNIT-IV	OW
7.		Explain the following parametric methods to measure be spectrum of long duration signals	
		i) ARMA model-	
		ii) MA model-	12M
		OR	
8.	a)	Explain how power spectrum can be estimated from the AR model	6M
	b)	Discuss the Welch method of Periodogram averaging	6M
	,	UNIT-V	
9.		Distinguish between interpolation and Decimation and analyze the rate converter	
		with a rational factor of I/D. Hence discuss the role of low pass filter on Multirate signal conversion	12M
		OR	
10.	a)	Explain the application of multirate signal processing in adaptive sub-band coding	
	-	system	6M
	b)	Describe the mathematical equations how sampling rate can be increased by a factor of L	6M

Hall T	icket Number :	R14								
Code	e: 4PA313									
M.Teo	M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016 Digital Communication Techniques (DECS)									
	Marks: 60 Time: er all five units by choosing one question from each unit (5 x 12 = 60 N ********* UNIT-I	3 Hours Aarks)								
1. a)		5M								
b)	Derive suitable expression for response of band pass system to band pass sign	al. 7M								
	OR									
2	By applying Gram-Schmidt procedure determine the orthonormal basis funct for four signals given below	lions								
	$s_1(t) = 1$ for $0 \le t \le 2$, $s_2(t) = 1$ for $0 \le t \le 1$.									
	$ = 0 otherwise = -1 1 \le t \le 2, \\ = 0 otherwise $									
	$s_3(t) = 1 for 0 \le t \le 2,$									
	$s_4(t) = -1$ for $0 \le t \le 3$, = -1 $2 \le t \le 3$,									
	= 0 otherwise									
	= 0 otherwise	12M								
0	UNIT-II									
3.	Discuss the working mechanism of optimum detector and realize optimum AV receiver. What are the merits and demerits comparing with matched receiver?	12M								
4.	OR A binary digital communication system employs the signals									
ч.	$S_0(t) = 0$ $0 \le t \le T$									
	$S_1(t) = A$ $0 \le t \le T$									
	For transmitting the information. This is called on-off signaling. The demodulator cross-correlates the received signal $r(t)$ with $s(t)$ and samples the output of the correlator at t+T.									
	 a) Determine the optimum detector for an AWGN channel and b) the optimum threshold c) Determine the probability of error as a function of the SNP 									
	c) Determine the probability of error as a function of the SNR. assuming that the signals are equally probable.									
	(UNIT-III)									
5. a)	Explain Diversity techniques for fading multipath channels.	6M								
b)	Describe the characterization of fading multipath channels. OR	6M								
6.	Briefly describe receiver structures for channels with Inter symbol Interference (UNIT-IV)	e.								
7.	With a neat sketch, explain optimum receiver for channels with ISI and AWG OR	N. 12M								
8.	Explain the signal Design for band limited channel	12M								
9. a)	Briefly describe suppression of ICI in OFDM system.	5M								
b)		7M								
10.	OR Explain in detail about Filter bank implementation of OFDM receiver with sketches.	neat 12M								
	***	ı∠IVI								

					1	-	1			1		1	7	
Hall ⁻	Ticke	et Number :												R14
Code: 4PA314														
M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016														
Wireless Communications														
Max	Ma	arks: 60					(DE	ECS)					Time: 3	Hours
-			by ch	100s	ing (one	que	stior	n froi	n ec	ach	unit	$(5 \times 12 = 60 \text{ Mc})$	
					-		****	****	ר					-
	-)					. 1. 9	Ľ	NIT-I	J					014
1.	a) b)	Discuss the										C m		6M
	 b) Explain the basis for classification of 1G,2G,3G and 4G networks OR 											6M		
2.	a)	Explain LMF	2120		and	SUD	Prot	_		rocr	hect t		uetooth	6M
۷.	b)	Discuss the								ncop				6M
	0)		uuvu	inag	,00 0		C							0111
3.	a)	Explain the	free-	spac	e pro	paga	U							6M
	b)	Discuss the		•	•					on				6M
OR														
4.	a)	a) Define fading and discuss types										6M		
	b) Explain the impulse-response model of a multipath channel										6M			
UNIT-III														
5.	a)	Describe the	e set	ups	for fr	eque	ency	and	polar	izatio	on Di	vers	ity and explain	6M
	b) Draw the block schematic of Rake receiver and explain the working										6M			
								OF	R					
6.	a)) Compare DS and FH spread-spectrum systems									6M			
	b) Discuss the properties of PN sequences									6M				
_	,						U	UNIT						
7.	a)	Explain TDN								•			· ! - : -	6M
	b)	Draw the se	t-up	for s	pace	-aivis	sion	multi OF		cces	s and	a ext	Diain	6M
8.	a)	Explain the	cana	city	asne	cts o	f CD				1			6M
0.	b)	Discuss the	•	-	•						`			6M
	2)		0.7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ſ		r-v					0 M
9.	a)	Discuss the	capa	acity	of fla	t-fad	C							6M
	b)	Explain the	•	•			•							6M
	-							OF	र					
10.	a)	Derive the e	expre	ssio	n for	max	imur	n cap	pacity	y of I	мімс) sys	stem, if there is	no
		Channel sta	te inf	orm	ation									6M
	b)	Discuss the	capa	acity	of fre	equei	•		tive f	ading	g cha	Innel	S	6M
							*	* *						

Hall 7	Ficke	et Number :	R14							
Code	ə: 4I	PA311								
M.Te	M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016									
		Digital System Design (DECS)								
		arks: 60 Time: 3 Hou								
Answ	er a	Il five units by choosing one question from each unit (5 x 12 = 60 Marks)							
		UNIT–I								
1.	a)	Develop an ASM chart of D flip flop and realize it using only NOR Gates.	6M							
	b)	Discuss in detail about reduction of state tables and state assignments.	6M							
_		OR								
2.	a)	What are the basic elements of an ASM chart? Explain clearly with an example.	6M							
	b)	Draw the ASM chart to detect the overlapping sequence 1010 from the incoming bit stream and output 1 for each detection.								
		Ex: x: 10101010110	сM							
		Z: 00010101000	6M							
	Implement the controller circuit using MUX method.									
		UNIT–II								
3.	a)	Explain about the following types of faults:								
		(i) stuck at faults (ii) Bridge faults (iii) transition and intermittent faults	6M							
	b)	Explain how Kohavi algorithm is useful in the detection of faults in digital circuits.	6M							
		OR								
4.	a)	With an example, explain the principle of operation of path sensitizations method	6M							
	b)	Write a D Algorithm and compare it with other test pattern generation methods.	6M							
		UNIT–III								
5.	a)	Explain briefly about the Distinguishing Experiment with an example.	6M							
	b)	Explain the concept of Machine identification with an example	6M							
		OR								
6.		Write note on State identification and fault detection experiment	12M							

6M

6M

UNIT-IV

- 7. a) Find minimized PLA of the following multiple output Boolean functions on a map. Calculate the area and cross point densities of the un-minimized and minimized PLAs.
 - $f_1 = (2,4,5,6,7,10,14,15)$
 - $f_2 = (4,5,7,11,15)$
 - b) Apply PLA maximization procedure and obtain the minimized expression to be implemented on PLA. For

F = 2021 + 0022 + 1200

OR

- 8. a) With examples, explain in detail about various types of cross point fault that occur in PLAs.6M
 - b) With an example, explain how test generation can be achieved in testing a PLA. 6M

UNIT-V

9.	a)	Explain the conversion between Mealy and Moore models with examples.	6M
	b)	Explain briefly about races and cycles in digital circuits.	6M
		OR	
10.	a)	Explain briefly, the occurrence of various types of hazards in digital circuits.	6M
	b)	Implement a hazard free circuit for the following function:	
		f(ABCD) = A'BC' + A'B'C + CD' + AC	6M

	Hall Ticket Number :												R14
--	----------------------	--	--	--	--	--	--	--	--	--	--	--	-----

Code: 4PB311

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016 Embedded System Concepts

(Common to DECS, Embedded Systems, VLSISD)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

- 1. Discuss the following in details
 - i) Characteristics and constraints of embedded systems
 - ii) Classifications of embedded systems

OR

2. Explain about significance of each hardware unit present in embedded design 12M

UNIT-II

3.	a)	Compare Harvard and Princeton memory organizations.	4M
	b)	Why should a program be divided into functions (routines or modules) and each	
		placed in different memory blocks or segments	8M
		OR	

4. What are the different memories, input and output devices used In embedded systems? How will you interface these input and output devices in embedded systems

UNIT-III

5. What is meant by scheduling? How do schedule the tasks with different algorithms 12M

OR

 Explain about different buses used in parallel communication between networked devices
 12M

 What is meant by co-design? Explain design & co-design issues in system development process
 12M

OR

8. Discuss different design methodologies for embedded system. 12M

UNIT-V

Describe the classes, the objects which are used in writing codes for saving an image file in a digital camera?
 12M

OR

10. How do you design an automatic chocolate vending machine? Explain clearly. 12M

12M