Hall Ticket Number :						R14

Code: 4PB312

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016

Micro Controllers & Interfacing

(Embedded Systems)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

UNIT-I

I. a) With a neat architectural diagram, explain about 8051.

8M

b) Explain about interrupts of 8051.

4M

OR

2. a) Discuss briefly about instructions of 8051.

8M

b) Discuss about timer modules of 8051.

4M

UNIT-II

3. With a neat diagram, explain about 8279 keyboard and display controller.

12M

OR

4. With an example, explain about flash memory interfacing with 8051 microcontroller.

12M

UNIT-III

5. Explain about addressing modes of Motorola 68HC11 with examples.

12M

OR

6. Explain about serial communication interface and A/D conversion features of Motorola 68HC11.

12M

UNIT-IV

7. a) Discuss about register file structure of PIC 16C74.

6M

b) Explain about program memory considerations of PIC 16C74.

6M

OR

8. a) Discuss about I/O ports of PIC 16C74.

6M

b) Explain about UART of PIC 16C74.

6M

UNIT-V

9. With a neat diagram, explain about ARM controller architecture.

12M

OR

10. Discuss about Thumb instructions of ARM processor with examples.

12M

Hall 1	Ticket I	Number :													R14
Code:	: 4PC3	11		•		·	·								
М.Тес	ch. I S	emester	J	V	LSI T	ech	nol	ogy	′			ons	Feb,	/Mar :	2016
			(Comm	on to	Emb	edde	ed Sy	⁄sten	ns &	VLSIS	SD)				
Max.	Marks	: 60											Tim	ne: 3 H	lours
Answe	er all fiv	e units by	choos /	ing o		uest *****		rom	ea	ch u	nit (5 x 1	2 = 6	0 Mar	·ks)
						UN	IIT-I								
1.	a) D	erive the I	s versus	s V _{DS} (expre	ession	n of a	a NM	10S	trans	istor.				6M
	b) D	raw the s	imple B	ICMO	S in	verte	r an	d ex	olair	n its	ope	ration	n. Me	ntion	its
	,	rawbacks a	•						•		'				6M
			_				OR								
2.	a) E	xplain the	design o	of CMC	OS in	verte	rs wi	th ne	eat e	xpres	ssion	s.			6M
	b) E	xplain the p	oaramet	ers G	ո, GD	s, Wo	o with	n res	pect	to a	MOS	dev	ice.		6M

UNIT-II

OR

UNIT-III

OR

UNIT-IV

OR

UNIT-V

OR

Explain the advantages and drawbacks of Static complementary gates.

Explain the scalable design rules in detail with neat diagrams.

3.

4.

5.

6.

7.

8.

9.

10.

a)

a) Explain the concept of wires.

Discuss the transistor structures in detail.

Explain the concept of resistive interconnect delays.

a) Discuss the alternate gate circuits with neat diagrams.

Design a 3 input NOR gate and explain its operation.

b) Explain the concept of layout design tools.

a) Explain the concept of Interconnect design.

b) Draw the layout of a 3 input NAND gate.

a) Discuss the concept of Off chip connections.

Give the concept of Power optimization.

a) Explain the concept of High level synthesis in detail.

Discuss the concept of Clocking disciplines.

a) Write a short note on simulation.

Discuss the switch logic networks in detail.

3M

9M

6M

Hall 1	Γicke	et Number :														R1
Code	e: 4P	PB313											J		L	
м.Те	ch.	I Semestei	r Re	gul	ar &	Sup	ople	eme	ntai	у Ех	am	ina	ions	Feb,	/Mar	⁻ 2016
			I	Red			_	erati	_	_	em	S				
		ırks: 60			•			ed Sy		,						Hours
4nsw	er a	ll five units b	y cr	100s	ing (one	que ****	stior ****	i froi	n ec	ach	unit	(5 x	12 = 6	oU MC	arks)
							UI	NIT-I								
1.	a)	With an exa	mple	exp	lain t	he fo	ollowi	ing s	yster	n call	s for	file	/O:			
		(i) open (ii) creat														
		(iii) write	C													
	b)	Write a brief	note	on :	Shar	ed M	lemo	ry.								
									DR							
2.	a)	With an exa	-	exp	lain t	he fo	ollowi	ing P	roce	ss co	ntro	func	tions	:		
		(ii) exit														
		(iii) wait			_	_										
	b)	Write a brief	note	on	Sema	apho	res.			$\overline{}$						
0		For late to the	'1	_ 1	. D.			$\overline{}$	IIT-II	J						
3.		Explain in de	etali a	abou	it Per	10010	tasi		dei. DR							
4.	a)	Write a brief	note	e on	Pree	mptiv	vity o			es.						
	b)	Describe the	use	s of	prec	eden	ice g	raph	and	task	grap	h.				
								UN	IT-II	i)						
5.	a)	Compare dy	nam	ic vs	. stat	ic sy	stem	ıs.								
	b)	With an exa	mple	exp	lain F	Roun	d Ro			ach	to re	al tim	ne sch	nedulir	ng.	
6.	a)	With an exa	mnle	AYN	lain e	affect	tive r		OR Se tin	168 2	nd d	المعطا	nes			
0.	b)	Define dyna	•	•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uve i	Cicac	oc tiii	103 6	iiia c	Icauii	1103.			
	,	•		•				UN	IT-IV	7						
7.	a)	With a neat	sketo	ch ex	(plair	the	hard)	ware	inte	rupt p	orioritie	es.	
	b)	Discuss in b	rief a	abou	t asy	nchr	onou	s tim	er fu	nctio	ns.					
								(DR							
8.		Explain the factor (a) Preempt		•												
		(b) Release			echar	nism										
								UN	IIT-V	,						
9.	a)	Discuss the	diffe	rent	types	of f	aults			_						
	b)	Explain in br	ief a	bout	Core	RT	Linu									
10	٥/	Briefly evala	in oh	out i	intoc	rator	l fail		DR andli	na						
10.	a) h)	Briefly expla With an exa			_				ariull	ııy.						

(i) Pipeline

(ii) Grouping commands

На		cket Number :	R14
Co	de:	4PC313	
М.	Tec	ch. I Semester Regular & Supplementary Examinations Feb/Mar 2	016
		Digital IC Design	
М	ax. I	(Common to Embedded Systems & VLSI System Design) Marks: 60 Time: 3 Ho	ours
		r all five units by choosing one question from each unit (5 x 12 = 60 Mark	
		UNIT-I	
1.		Design Static CMOS inverter and analyze its behavior using switch models.	12M
		OR	
2.	a)	Describe significant advantages of dynamic logic over static logic.	6M
	b)	What are all the effects of supply voltage scaling in CMOS inverter? Explain in brief. UNIT-II	6M
3.	a)	What are the advantages of NORA logic? Also explain the need of NORA logic.	6M
	b)	Design a full adder using Domino logic gates.	6M
		OR	
4.		Design 3 to 8 decoder in NORA logic. Use 2 to 4 decoder while implementing 3 to 8 decoder.	12M
		UNIT-III	
5.	a)	Explain the adiabatic approach to CMOS VLSI design technique.	6M
	b)	Derive the expression for short circuit power consumption in CMOS circuits and relate drain current (I_D), drain voltage (V_{DD}).	6M
		OR	
6.	a)	Define guard evolution. Explain its role in switching activity of CMOS XOR logic circuit.	6M
	b)	Explain how bus multiplexing effects on logic effort in CMOS NAND gate. Find its logic effort value.	6M
		UNIT-IV	
7.	a)	What are the precautions to be taken during global routing and mention its layout lambda based design limitations for CMOS.	6M
	b)	Calculate the equivalent sheet resistance for two NMOS inverters connected in	
		cascaded. Assume $\binom{W}{L}_p = 60$, $\binom{W}{L}_n = 40$, Sheet resistance as R _s , Delay time as	6M
		OR	
8.	a)	Explain the function to drive large capacitance load (C_{LOAD}) in low power CMOS circuits. Find the resonance frequency f_{RES} in terms of R_{LOAD} and C_{LOAD} .	6M
	b)	Describe full custom layout design for CMOS circuit.	6M
		UNIT-V	
9.	a)	Write the design procedure for Modified Booth Multiplier.	6M
	b)	Give the transistor level realization of Adder/ Subtractor.	6M
4 -		OR	
10.	,	What are the design criteria reviewed in CMOS static RAM cell design?	6M
	b)	Explain how ALU functions implemented using adders and multipliers. ***	6M

Page **1** of **1**

Hall Ticket Number :						R14

Code: 4PC315

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016

FPGA Architectures and Applications

(Common to Embedded Systems & VLSISD)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

UNIT-I

1.	a)	Distinguish between Altera's MAX 5000 and MAX7000 series PLDS.	6M
	b)	Explain Cypres Flash 370 Device Technology.	6M

ΩR

- 2. a) With a neat sketch of MAX 5000 device macro cell. Explain how the sequential logic is implemented.
 - b) Implement the following Boolean function using a suitable PAL F(a, b, c, d) = m(2,4,6,8,10,11,12,14,15).

UNIT-II

- 3. a) Draw and explain logic blocks of FPGAs. 6M
 - b) List the Actel based FPGAs and give their speed performance. 6M

OR

- a) Distinguish between FPGA Design Flow and ASIC Design Flow. Explain FPGA Routing Architecture with all the steps.
 - b) Explain the Technology mapping for FPGAs. 6M

UNIT-III

- 5. a) Give brief comparison of Act1, Act2 and Act3 FPGAS. 6M
 - b) What are the salient features of Altera's FLEX 8000 FPGA logic element? 6M

OR

- 6. a) Explain the AT & T-ORACs (Optimized Reconfigurable Cell Array). 6M
 - b) Speed performance in system programmability. 6M

UNIT-IV

7. Draw a state diagram for a sequence checker, whose output will be '1' whenever the sequence 1011 is detected. Develop a one-hot design for the same sequence checker.

- OR
 8. a) What are the features of the extended Petri Nets used for parallel controllers? 6M
 - b) Explain the Micro-programing linked state machine with an example. 6M

UNIT-V

- 9. a) Explain FSM architectures centered around non-registered PLDs. 6M
 - b) With suitable example, explain system level design by considering controller, data path.

OR

- 10. a) Explain the design approach of state machines centered around shift registers. 6M
 - b) With an example explain about One-Hot design method using ASMs. 6M

12M

6M

Hall T	icket Number :	14
Code:	4PB311	
м.Тес	h. I Semester Regular & Supplementary Examinations Feb/Mar 201	16
	Embedded System Concepts	
May M	(Common to DECS, Embedded Systems, VLSISD) Aarks: 60 Time: 3 Hou	rc
	fall five units by choosing one question from each unit ($5 \times 12 = 60$ Marks) **********	-
	UNIT-I	
1.	Discuss the following in details	
	 i) Characteristics and constraints of embedded systems 	
	ii) Classifications of embedded systems	12M
	OR	
2.	Explain about significance of each hardware unit present in embedded design	12M
	UNIT-II	
3. a)	Compare Harvard and Princeton memory organizations.	4M
b)	Why should a program be divided into functions (routines or modules) and each	
	placed in different memory blocks or segments	8M
	OR	
4.	What are the different memories, input and output devices used In embedded systems? How will you interface these input and output devices in embedded systems	12M
	UNIT-III	
5.	What is meant by scheduling? How do schedule the tasks with different algorithms	12M
	OR	
6.	Explain about different buses used in parallel communication between	
	networked devices	12M
	UNIT-IV	
7.	What is meant by co-design? Explain design & co-design issues in system	
	development process	12M
	OR	
8.	Discuss different design methodologies for embedded system.	12M
	UNIT-V	
9.	Describe the classes, the objects which are used in writing codes for saving an	_
	image file in a digital camera?	12M
	OR	

How do you design an automatic chocolate vending machine? Explain clearly.

10.

12M