Code: 4PC314

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016 Modelling & Synthesis through Verilog HDL

(Common to DECS & VLSISD)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 12 = 60 Marks)

UNIT-I Explain about various Data types available in Verilog 12M 1. OR 2. Explain about various Operators available in Verilog. 12M UNIT-II 3. Explain about Models of Propagation Delays in Verilog. 12M OR 4. Explain about Inertial Delay and Transport Delay in Verilog. 12M UNIT-III 5. Explain about Procedural Timing Control and Synchronization. 12M OR 6. Explain about Constructs for Activity Flow Control in Verilog. 12M **UNIT-IV** Explain about HDL-based Synthesis of Combinational Logic in Verilog. 7. 12M OR 8. Explain about Synthesis of Finite State Machine (FSM) in Verilog. 12M **UNIT-V** Explain about Synthesis of Expressions and Operators for language constructs. 9. 12M OR

10. Explain about Synthesis of Assignments for language constructs 12M

										1		1	1				
Hall	Ficke	et Number :														R	14
Code	: 4P0	C 311															
M.Tec	ch.	l Semester	Reg	iula	ır & .	Sup	pler	ner	ntary	/ Exc	ami	nati	ons	Feb/	′Ма	r 201	6
									logy								
Man	Mar		(Corr	nmo	n to	Emb	edd	ed S	yster	ns &	VLSI	SD)		Tip			~
Max. Answe	-	five units by	' chc	oosir	ng o	ne c	200S	tion ****	from	n ea	ch u	nit (5 x 1			Houi arks)	S
								NIT-I									
1.	a)	Derive the ID	s ver	sus	VDS	expre	essio	n of	a NM	IOS	trans	sistor					6M
	b)	Draw the si	•						nd ex	cplair	n its	ope	ratior	n. Me	ntior	n its	
		drawbacks a	ind gi	ive s	suitat	ole re	emed										6M
0		Evalaia tha a				20 :		OF		1 .							CN 4
2.	a) b)	Explain the c	Ŭ								•						6M
	b)	Explain the p	baran	nete	rs G	m, G[os, VV	o Wit	n res	pect	to a	MOS	s dev	ice.			6M
							L	UNI	Г-II								
3.	a)	Explain the c	conce	ept c	of wir	es.											ЗM
	b)	Explain the s	scalal	ble o	desig	n rul	es in			h ne	at dia	agrar	ns.				9M
				•			_	OF									
4.	a)	Discuss the															6M
	b)	Explain the c	conce	ept c	of lay	out d	lesigi	n too	IS.								6M
								UNIT	-111								
5.	a)	Explain the a	advar	ntag	es ar	nd dr	awba	acks	of St	atic o	comp	oleme	entary	/ gate	s.		6M
	b)	Explain the c	conce	ept c	of res	istive	e inte			dela	ys.						6M
_								OF									
6.	a)	Discuss the			•					•							6M
	b)	Design a 3 ir	nput I	NOF	R gat	e and	d exp	blain	its op	perat	ion.						6M
							Ŀ	UNIT	-IV								
7.	a)	Explain the c	conce	ept c	of Inte	ercor	nnect	desi	ign.								6M
	b)	Discuss the	switc	h lo	gic n	etwo	rks ir										6M
								OF	२								
8.	a)	Write a short															6M
	b)	Draw the lay	out o	ofa3	3 inp	ut NA		gate.									6M
								רואט	г -v]								
9.	a)	Discuss the	conce	ept o	of Of	f chip	o con	nect	ions.								6M
	b)	Give the con	cept	of F	owe	r opt	imiza										6M
								OF									
10.	a)	Explain the c		•						n det	ail.						6M
	b)	Discuss the	conce	ept	of Clo	ockin	ig dis	scipli	nes.								6M
								-									

Code: 4PC312

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016

Analog IC Design

(VLSI System Design)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

- 1. a) Explain in detail about large signal and small signal modeling of BJT
 - b) Discuss the operation of common gate amplifier circuit with current mirror as active load

OR

- 2. a) Explain why source/emitter follower circuits exhibits large amounts of overshoot and ringing
 - b) Derive the necessary equations to evaluate the output impedance of an emitter follower Bipolar gain stage with a help of a circuit diagram

UNIT-II

- 3. a) What are the ways of improving slew rate of 2-stage CMOS OPAMP? And derive an expression for slew rate of CMOS OPAMP.
 - b) Explain about various OPAMP compensation techniques

OR

- 4. a) What is CMFB circuit? What are various methods of designing CMFB circuits? And compare them.
 - b) Explain the principle of continuous time CMFB circuit

UNIT-III

- 5. a) Explain the correlated double sampling techniques with suitable example.
 - b) Draw the circuit of switched capacitor circuit and explain its principle

OR

- 6. Write short note on
 - a. First order filter
 - b. Biquard filters

UNIT-IV

- 7. Write short note on
 - a. Hybrid Converters
 - b. Nyquist rate Converters

OR

- 8. a) Explain the characteristic parameters of A/D and D/A converters in detail
 - b) Explain the role of Quantizing error in the Process of conversion

- 9. a) Explain about the Digital decimation filters
 - b) Derive the component values of 1st order continuous time filter.

OR

- 10. a) What are the practical considerations of over sampling converters
 - b) Explain about the band pass over sampling Converters

На	ll Ti	cket Number :												R14
Co	de:	4PC313	LJ		1	1	<u></u>	1	1	1		1	_	L
M.	M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016 Digital IC Design													
		(Comm Marks: 60 r <i>all five</i> units b					,							3 Hours Aarks)
							U	I-TIN]					
1.		Design Static C	MOS	inv	erter	and	anal	•	ts be	havio	or us	ing s	witch models.	12M
	,		. ,					OR						
2.	a) Þ	Describe signif				-	•		•				•	6M
	b)	What are all the					Ū	NIT-						
3.	a)	What are the a		0				•		expla	in th	e ne	ed of NORA log	
	b)	Design a full ac	der us	sing	g Doi	mino	logic	U	es.					6M
٨		Docian 2 to 9	doood	or i	in Ni		logic		~ ^ }	- A	door	dor	while implement	oting
4.		Design 3 to 8 3 to 8 decoder.		eri		JKA	_ 		-	.0 4	uecc	uer		12M
~		Eveloie the edi	ah atia			ah 4a	<u> </u>	NIT-I						CM.
ວ.	a) b)	•		• •										6M
	D)	Derive the expression for short circuit power consumption in CMOS circuits and relate drain current (I_D), drain voltage (V_{DD}). OR									6M			
6.	a)	Define guard evo	olution.	Ex	olain	its ro	le in :		nina a	activit	v of (СМО	S XOR logic circ	uit. 6M
0.	b)	Explain how bu			•				•		•		•	
	~)	its logic effort v				9 0	_	NIT-I					galer	6M
7.	a)	What are the	precau	utio	ons t	o be	_		_	alo	bal ı	outir	ng and mentio	n its
	,	layout lambda l	•						-	•			5	6M
	b)	Calculate the e	•											
		cascaded. Assu	me $\left(\frac{w}{L}\right)$) _P	= 60	$\left(\frac{w}{L}\right)$	$)_n =$	4 0, S	heet	resis	tance	e as F	R _s , Delay time as	6M
								OR						
8.	a)	Explain the fun circuits. Find th				•	•				•	,	•	MOS 6M
	b)	Describe full cu	istom I	layo	out d	esigr	n for	СМС	S ci	cuit.				6M
							U	NIT-	V]					
9.	a)	Write the desig	n proc	edu	ure fo	or Mo	odifie	d Bo	oth N	/lultip	olier.			6M
	b)	Give the transis	stor lev	vel	reali	zatio	n of /		r/ Su	btrac	ctor.			6M
						-		OR						
10.	,	What are the d	•										· ·	6M
	b)	Explain how AL	_U fund	ctio	ons ir	npler		ed us **	sing a	adde	rs ar	nd mi	ultipliers.	6M

	Hall Ticket Number :												R14
--	----------------------	--	--	--	--	--	--	--	--	--	--	--	-----

Code: 4PC315

Code	e. 41	(315	
M.Te	ech.	I Semester Regular & Supplementary Examinations Feb/Mar 20 FPGA Architectures and Applicaitons)16
		(Common to Embedded Systems & VLSISD)	
		arks: 60 Time: 3 Ho Il five units by choosing one question from each unit (5 x 12 = 60 Marks	
		******** UNIT-I	
1	2)		CM
1.	a)	Distinguish between Altera's MAX 5000 and MAX7000 series PLDS.	6M
	b)	Explain Cypres Flash 370 Device Technology.	6M
2.	2)	OR With a neat sketch of MAX 5000 device macro cell. Explain how the	
Ζ.	a)	sequential logic is implemented.	6M
	b)	Implement the following Boolean function using a suitable PAL	
		F(a, b, c, d) = m(2,4,6,8,10,11,12,14,15).	6M
3.	a)	Draw and explain logic blocks of FPGAs.	6M
	b)	List the Actel based FPGAs and give their speed performance.	6M
	2)	OR	om
4.	a)	Distinguish between FPGA Design Flow and ASIC Design Flow. Explain FPGA Routing Architecture with all the steps.	6M
	b)	Explain the Technology mapping for FPGAs.	6M
		UNIT-III	
5.	a)	Give brief comparison of Act1, Act2 and Act3 FPGAS.	6M
	b)	What are the salient features of Altera's FLEX 8000 FPGA logic element?	6M
		OR	
6.	a)	Explain the AT & T-ORACs (Optimized Reconfigurable Cell Array).	6M
	b)	Speed performance in system programmability.	6M
7.		Draw a state diagram for a sequence checker, whose output will be '1' whenever	
		the sequence 1011 is detected. Develop a one-hot design for the same	
		sequence checker.	12M
0	2)	OR	CM
8.	a) b)	What are the features of the extended Petri Nets used for parallel controllers?	6M
	b)	Explain the Micro-programing linked state machine with an example.	6M
9.	a)	Explain FSM architectures centered around non-registered PLDs.	6M
	b)	With suitable example, explain system level design by considering controller, data path.	6M
		OR	
10.	a)	Explain the design approach of state machines centered around shift registers.	6M
	b)	With an example explain about One-Hot design method using ASMs	6M

b) With an example explain about One-Hot design method using ASMs. 6M

	Hall Ticket Number :												R14
--	----------------------	--	--	--	--	--	--	--	--	--	--	--	-----

Code: 4PB311

M.Tech. I Semester Regular & Supplementary Examinations Feb/Mar 2016 Embedded System Concepts

(Common to DECS, Embedded Systems, VLSISD)

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

- 1. Discuss the following in details
 - i) Characteristics and constraints of embedded systems
 - ii) Classifications of embedded systems

OR

2. Explain about significance of each hardware unit present in embedded design 12M

UNIT-II

3.	a)	Compare Harvard and Princeton memory organizations.	4M
	b)	Why should a program be divided into functions (routines or modules) and each	
		placed in different memory blocks or segments	8M
		OR	

4. What are the different memories, input and output devices used In embedded systems? How will you interface these input and output devices in embedded systems

UNIT-III

5. What is meant by scheduling? How do schedule the tasks with different algorithms 12M

OR

 Explain about different buses used in parallel communication between networked devices
12M

 What is meant by co-design? Explain design & co-design issues in system development process
12M

OR

8. Discuss different design methodologies for embedded system. 12M

UNIT-V

Describe the classes, the objects which are used in writing codes for saving an image file in a digital camera?
12M

OR

10. How do you design an automatic chocolate vending machine? Explain clearly. 12M

12M