Hall	Ticke	et Number : R1	4
Code: 4P6211			
M.Tech. I Semester Supplementary Examinations Aug/Sep 2016			
Modern Control theory			
(Common to EPE & EPS) Max. Marks: 60 Time: 3 Hours			
Answer all five units by choosing one question from each unit (5 x 12 = 60Marks)			
		UNIT–I	
1.	a)	Explain the linear transformation and matrices	4M
	b)	Show that the set of all real polynomials in x of degree 2 forms a linear space with the usual definition of addition and scalar multiplication. Is the set of all real polynomials in x of degree 2 a vector space?	8M
		OR	
2.	a)	Describe the vector and matrix norms	4M
	b)	Find the Eigen values, Eigen vectors and Jordan form representations for the following matrix	
		$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\begin{bmatrix} -1 & -2 & -1 \end{bmatrix}$	8M
		UNIT–II	
3.	a)		4M
	b)	Determine the state controllability and observability for the systems represented by the following state equations.	
		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u, check with \ y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	8M
		OR	
4.	a)	Derive the state models for linear continuous time system	4M
	b)	Discuss the state controllability and observability of the following system	
		$[\dot{x}] = \begin{vmatrix} -3 & -1 \\ -2 & 1.5 \end{vmatrix} [x] + \begin{vmatrix} 1 \\ 4 \end{vmatrix} [u]$	
			8M
-		UNIT–III	
5.		A linear time invariant system is described by the following state model. Obtain the canonical form of the state model.	
		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} \underline{14} & \underline{6} & -\underline{15} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	12M
~		OR Openeiden the suptom defined by interest	
6.		Consider the system defined by $\dot{x} = Ax$, $y = Cx$ where	

$$A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Design a full-order state observer. The desired observer poles are s = -5 and s = -5. Also derive necessary expressions. 12M

12M

12M

UNIT–IV

7. The block diagram of a system with hysteresis is shown in figure. Using describing function method, determine whether limit cycle exists in the system. If limit cycles exists then, determine their amplitude and frequency.

8. A simple servo is described by the following equations Reaction torque = $\frac{1}{m_c} + 0.5 \frac{1}{m_c}$

Drive torque = 2 $sign (e + 0.5\dot{e})$

$$e = {}_{R} - {}_{R} - {}_{c}$$

 $e(0) = 2 and \dot{e}(0) = 0$

Construct the phase trajectory using the delta method

9. For the system $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x$

Find the suitable lyapunov function $V_{(x)}$ obtain an upper bound on the response time such that it takes the system to go from a point on the boundary of the closed curve $V_{(x)}$ =100 to a point within the closed curve $V_{(x)}$ = 0.05. 12M

10. Briefly describe the formulation of the optimal control problem 12M
