## Code: 4P6211

M.Tech. I Semester Supplementary Examinations Aug/Sep 2016

## Modern Control theory

## ( Common to EPE \& EPS )

Max. Marks: 60

## UNIT-I

1. a) Explain the linear transformation and matrices
b) Show that the set of all real polynomials in $x$ of degrees 2 forms a linear space with the usual definition of addition and scalar multiplication. Is the set of all real polynomials in $x$ of degree 2 a vector space?

OR
2. a) Describe the vector and matrix norms
b) Find the Eigen values, Eigen vectors and Jordan form representations for the following matrix

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 3 \\
-1 & -2 & -1
\end{array}\right]
$$

UNIT-II
3. a) State and prove the properties of STM
b) Determine the state controllability and observability for the systems represented by the following state equations.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { u, check with } y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

4. a) Derive the state models for linear continuous time system
b) Discuss the state controllability and observability of the following system

$$
[\dot{x}]=\left[\begin{array}{ll}
-3 & -1 \\
-2 & 1.5
\end{array}\right][x]+\left[\begin{array}{l}
1 \\
4
\end{array}\right][u]
$$

## UNIT-III

5. A linear time invariant system is described by the following state model. Obtain the canonical form of the state model.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-2 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u \text { and } y=\left[\begin{array}{ccc}
\frac{14}{5} & \frac{6}{5} & -\frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

## OR

6. Consider the system defined by $\dot{x}=A x, y=C x$ where

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
1 & -2
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

Design a full-order state observer. The desired observer poles are $s=-5$ and $s=-5$.Also derive necessary expressions.

## UNIT-IV

7. The block diagram of a system with hysteresis is shown in figure. Using describing function method, determine whether limit cycle exists in the system. If limit cycles exists then, determine their amplitude and frequency.

8. A simple servo is described by the following equations

Reaction torque $=\ddot{\theta_{c}}+0.5 \dot{\theta_{c}}$
Drive torque $=2 \operatorname{sign}(e+0.5 \dot{e})$

$$
\begin{aligned}
& e=\theta_{R}-\theta_{c} \\
& e(0)=2 \text { and } \dot{e}(0)=0
\end{aligned}
$$

Construct the phase trajectory using the delta method

## UNIT-V

9. For the system $\dot{x}=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right] x$

Find the suitable lyapunov function $\mathrm{V}_{(\mathrm{x})}$ obtain an upper bound on the response time such that it takes the system to go from a point on the boundary of the closed curve $\mathrm{V}_{(x)}=100$ to a point within the closed curve $\quad \mathrm{V}_{(\mathrm{x})}=0.05$.

OR
10. Briefly describe the formulation of the optimal control problem

