Hall Ticket Number :												R14
----------------------	--	--	--	--	--	--	--	--	--	--	--	-----

Code: 4PT621

Max. Marks: 60

M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016

Structural Dynamics

(Structural Engineering)

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

- 1. a) Explain about free vibration and forced vibration.
 - b) A dynamics system has maximum velocity of 200 mm/s and the natural period is 1s. If the initial displacement is 10 mm, determine the amplitude, the initial velocity and the maximum acceleration.

OR

- 2. a) Explain about methods of discretization.
 - b) A one kg mass is suspended by a spring having a stiffness of 1N/mm. Determine the natural frequency and static deflection of the spring.

UNIT-II

- 3. a) Explain about dynamic magnification factor.
 - b) A vibrating system consists of a mass 5 kg, spring stiffness 120 N/M and a damper with a damping coefficient of 5 N-s/m. Determine
 - i. Natural frequency.
 - ii. Damping factor.
 - iii. Logarithmic decrement.
 - iv. Ratio of two successive amplitudes and
 - v. No. of cycles after which the initial amplitude is reduced to 25%.

OR

- 4. a) Explain about Duhamel integral.
 - b) A machine of 200 kg mass is supported on four parallel springs of total stiffness 750 N/M has an unbalanced rotating component which result is a disturbing force of 350 N at a frequency of 2100 rpm. If damping ratio is 0.2. Determine
 - i) Amplitude of motion due to the unbalance.
 - ii) Transmissibility.
 - iii) Transmitted force.

UNIT-III

- 5. a) Derive an equation of free un damped vibration analysis of MDOF systems.
 - b) Explain about Eigen valve and Eigen vector is MDOF systems.

OR

 Determine the natural frequencies and mode shapes of the given MDOF system. EI=4.5 * 10⁶ N-m² for all columns.

7. Determine the natural frequencies and mode shapes for the framed structure shown in Fig.

8. Determine the natural frequencies and mode shapes shown in Fig by Holzer's method.

9. Determine the frequencies of beams subjected to flexural vibration with one end fixed and one end free.

OR

10. A three storeged symmetrical RC school building situated BHUJ with the following data:

Plan dimensions – 6.0 m, Storey height – 3.0m, Total weight of beams in a storey – 120 kN, Total weight of slab in a storey – 200 kN, Total weight of column is a storey – 50 kN, Total weight of walls in a storey – 500 kN, Live load – 120 kN, Weight of terrace floor – 650 kN.

The structure is resting on hand rock. Determine the total base shear and lateral loads at each floor levels for 5% of damping using IS method.

				1								1	-1			
Hall ⁻	Ticke	et Number :													R1	4
Code	: 4 P1	622														
M.Te	ch.	II Semeste		-		-	-		-				_	g/Se	p 201	6
		F	-init					lysi				res				
		Marks: 60		(5	truc	ctur	al Ei	ngin	ieei	ring)		Tipo		Hours	
		all five units	by c	choc	sina	one	aue	estion	n froi	n ea	nchi	unit				
			, .				*****						(• / · · -		, ,	
							l	UNIT	-I							
1.	a)	Explain the	Rayl	eigh	–Ritz	z me	thod	of fur	nctio	nal a	ppro	xima	ition.			6M
	b)	What are the	adva	antag	es, di	sadv	antag	jes an	d lim	itatio	ns of	finite	element	analy	/sis?	6M
								OR								
2.	a)	Explain finite	e ele	men	t moo	deling	g and	d disc	retiz	atior).					6M
	b)	Explain plar	ne str	ress	analy	/sis.										6M
							l	JNIT-	-11							
3.		Explain the	follov	wing												
		(i) Bar e														
		(ii) beam (iii) boun			dition											
		(iv) Asse	•													12M
		(,						OR								
4.		Derive the e	eleme	ent st	iffne	ss m	atrice	es for	bar	and	bear	n ele	ments.			12M
							ι	JNIT-	-111							
5.		Find the noo	dal di	isplad	ceme	nts.	stres	ses a	nd fo	orces	in th	ne m	embers o	of the	e truss	
		shown in figu		-												
		20)KN													
					$\overline{\ }$											
			4n	n		$\overline{\ }$										
							\searrow									
			/	\bigwedge		2		\rightarrow								
			77	117		3m		$\frac{1}{2}$,							
								////								12M
0	-)	D		1				OR						- 1		
6.	a)	Draw and bi plane strain		-	ain c	Intere	ent ty	pes o		emer	nts us	sed to	or plane	stres	is and	6M
	b)	Explain conv		•	and c	comp	atibili	tv rec	uire	ment	s of a	a disp	lacemen	it mo	del.	6M
	- /		0			•		JNIT-	-			•				
7.	a)	Draw the typi	ical is	:0-na	rame	tric el				and	two d	imen	sional ele	ment	rs.	6M
7.	a) b)	What are iso		•												6M
	2)	i i i at a lo i o	o pui	amo				OR			annat	ie ira				OIVI
8.		Write the ste	eps i	nvolv	/ed ii	n the	form	nulatio	on o	f eler	nent	stiffr	ness mat	trix fc	or four	
		noded iso-p	aram	netric	qua	drilat	eral	elem	ent.							12M
							ι	JNIT-	-V							
9.	a)	Draw typical	solid	l eler	nents	s to b	e use	ed for	thre	e – d	imen	siona	al stress a	analy	vsis.	6M
	b)	Explain hexa	ahed	Iral is	so-pa	irame	etric	eleme	ents.							6M
								OR								
10.	a)	Explain stre	ss st	rain	relati	onsh	ip of	8-no	ded	iso-p	aran	netrio	c solid el	emer	nt.	6M
	b)	Derive the st	train	displa	acem	nent r	natrix	c for h	nexal	nedra	al iso	para	metric el	emer	nts.	6M
							**	*								
															Page 1	of 1

F	lall 1	Ficke	t Number : R14											14			
C	code	e: 4P	27623														
	M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016								6								
	Stability of Structures																
	(Structural Engineering) Max. Marks: 60 Time: 3 Hours																
	Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)																
								_	***** NIT-								
	1.		Find the ma	avimi	ım d	lofloc	tion				aam	- 0	olum	n suhi	iact to	moment	
	1.		(M_0) at both													momen	12M
			< - /					0	0								
	2.	a)	Derive the b	basic	diffe	renti	al eq	uatio	n for	bea	m-co	lum	า.				5M
		b)	Derive the	•											•••	••	
			and the oth					ıbjec	ted t	o an	u.d.	l of	inter	isity q	/m ar	nd also a	
			constant lor	igitud	Jinai	TOICE	; r.	ſ	UNI	T-II)						7M
	3.		Using energ	ay me	ethoo	d, dei	ive t	he ex			, for c	ritica	al loa	d of a	colun	nn whose	•
			both ends a						•								12M
									0	R							
	4.		Derive the	•	essic	on fo	r crit	ical	load	of a	colu	ımn	cons	iderin	g the	effect of	
			shear force.					ſ	UNI	T_III	ו						12M
	5.	a)	Enumerate	the a	neen	nntio	ns m	l ade) mod	ءىايا	theo	rv			4M
	0.	۵, b)	Explain in d			•								•	abilitv		8M
		,	•					,	0			,		••	,		
	6.		Explain in d	etail	abou	ut the	pure	e tors	sion c	of thir	ו-wa	lled l	bar o	f open	cros	s section.	12M
									UNI	T-IV							
	7.	a)	Derive an e							of ca	Intile	ver	colun	nn un	der a	constant	
		F)	load 'P' usir	-		-											8M
		b)	Explain brie	iiy tr	e pri	ncipi	eors	static	nary O	•	muai	ene	rgy.				4M
	8.	a)	Compare ga	alerki	in's r	netho	nd wi	th Ra			tz m	etho	d.				4M
	0.	,															
		b)	Verify whe	ther	the	give	n tu	Inctio	on w	$=\overline{2l}$	$\frac{1}{3}(3l)$	x² — x	r ³) re	presei	nts a	suitable)
			galerkin tria	l funo	ction	for a	cant	tileve (umn. T-V	Tak	e the	e orig	jin at t	he fix	ed end.	8M
	9.		Assuming thread the rectangular									-	-				
			compressive	e for	ce in	two	direc	tions	•								12M
									0								
	10		Explain the beam subje				•		simp	ly su	ippor	ted	deep	narro	ow re	ctangular	12M
			Souri Subje	5.00	10 pt		on un	-	**								1 2111

Γ

Hall 7	Ficke	xet Number : R14										R14				
Code	le: 4PT624															
M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016)16						
Analysis of Shells and Folded Plates (Structural Engineering)																
Μ	lax.	Marks: 60			(311			ngi		ng)			Ti	me:	3 Hour	S
Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)																
								***** VIT-I								
1.	a)	Give a short	. 200	ount	of the	a cla	\square		_ L of s	halle						6M
	b)												6M			
	~)			are		- nat		OF				00.	•			0
2.	a)	Explain brie	fly th	e me	embra	ane a	and b	endi	ng th	eorie	es foi	the	analys	is of	shell	6M
	b)	Derive the e	quilil	orium	ו equ	atior	ns for	the	benc	ling a	analy	sis o	f a cyli	ndric	al shell	
		element							- ••)							6M
3.		Dorivo the a	ovor	nina	ואם	0.011	<u> </u>	UNIT		na th	005	ofo	dindria	مامه	مالم	12M
З.		Derive the g	over	ning	DKJ	equa	alion			ng m	eory		yinanc	ai sri	ens	I ZIVI
4.	a)	How do you	clas	sifv l	ona a	and s	short	-								6M
	b)	Explain the		•	Ŭ					shell	s usi	ng A	SCE m	netho	d	6M
	,	·				0	C	UNIT				U				
5.	a)	Explain the	BIS	Class	sificat	ion d	of she	ells								6M
	b)	Derive the g	over	ning	equa	tions	s for	shell	of de	ouble	curv	/atur	е			6M
				_				OF								
6.	a)	Explain how What is mea		•••		•			can I	be ge	enera	ated	as a ru	led	surface.	6M
	b)	How do you		•	•	•••			a hv	voar s	shell'	?				6M
	,	,, ,		3		3	<u> </u>	JNIT		1						•
7.	a)	Explain the	term	s pla	te rot	atior	n and	l joint	t rota	tion						6M
	b)	Explain the	Simp	sons	s met	hod	of an	alysi	ng fo	olded	plate	es in	detail			6M
								OF								
8.	a)	Explain the d				-							-		-	
	b)	Explain step	by st	tep p	rocec	lure	<u> </u>	-		olded	plate	es by	Whitne	əy's r	nethod.	6M
9.	a)	Dorivo the a	lonor		ulatic	n fo	<u> </u>	UNIT orbo		of row	oluti	0 0				6M
9.	a) b)									6M						
	0)	OR								OW						
10.		Write short r	note	on												
		i. Structu	ural b	ehav	/iour	of fo	lded	plate	s							
		ii. Diaphi	•				•									
		iii. Shells			•				•							4014
		iv. Lines	OT CL	urvat	ure ir	ı a s		and ti **	neir s	signif	icano	e:				12M
								-								

Hall	Ticke	et Number : R1	4
Code	e: 4F	PT626	
M.T	ech	n. II Semester Regular & Supplementary Examinations Aug/Sep 2010	5
		Advanced Concrete Technology	
٨	1 av	(Structural Engineering) Marks: 60 Time: 3 Hours	
		ver all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)	

		UNIT-I	
1.	a)	What are the factors that affect the shrinkage and creep of concrete?	6M
	b)	Explain bogue's compound and also explain the structure of hydrated cement paste.	6M
2.	a)	OR Describe the role played by gypsum in the hydration reaction of cement.	6M
۷.	a) b)	What are the effects of the shape and texture of aggregates on the strength	OIVI
	0)	and workability of concrete?	6M
		UNIT-II	
3.	a)	How does a surface-active agent increase workability and what method will	
		you adopt to cure concrete in areas of water shortage?	6M
	b)	Classify the various concrete chemicals based on their use and explain in	сM
		detail any two commonly used chemical admixture in concrete. OR	6M
4.	a)	How mineral admixtures are classified and explain the usage of any three	
	α)	mineral admixtures which are used in concrete.	6M
	b)	How segregation and bleeding are reduced by using air-entraining agents. Justify.	6M
5.	a)	What are the various techniques used to achieve high strength and describe	
	۲	the typical composition of high-strength concrete?	6M
	b)	What are the important long-term properties of high-strength concrete? Compare them with those of conventional concrete.	6M
		OR	
6.	a)	How does the porous structure of rice husk ash influence the properties of	
		hardened concrete?	6M
	b)	What aspects are to be investigated for high performance in complex exposure conditions?	6M
			OIVI
7.	a)	Explain in detail what you understand by investigation plan.	6M
	b)	What test will you use to determine the chloride content in concrete and how	
		will you determine the hydration of hardened concrete.	6M
		OR	
8.		Explain the following tests with the help of neat sketches	6M
		(i) Pullout tests(ii) Break off tests	6M
			0101
9.	a)	Explain the role of formwork in the quality of concrete construction.	6M
	b)	What are the requirements of structural timber formwork? Explain	6M
		OR	
10.	a)	What are the basic assumptions made in the design of formworks?	6M
	b)	List out some of the common deficiencies in form work which lead to the failure of structures	6M
		failure of structures.	

Hall Ticket Number : R14	Hall Ticket Number :
--------------------------	----------------------

Code: 4PT628

Max. Marks: 60

M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016

Advanced Steel Design

(Structural Engineering)

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

1. Explain various considerations to be made for design steel chimneys?

OR

2. A self-supporting steel stack is 100 meters high and 3.5 meters diameter at its base. Design the plates for stack. Also design the base plate, lugs and anchor bolts. Assume suitable data.

<u></u>
• •••••

3. Determine the end moments in the columns and beams of the two storied building frame as shown by cantilever method?

4. Explain with neat sketches the approximate methods of analysis of multi-storied buildings. What are the assumptions and limitations of portal and cantilever methods?

UNIT-III

5. What are the loads acting on gantry girder and explain design procedure of Gantry girder?

OR

6. Design the gantry for the following data Crane load capacity : 250 kN Weight of crane girder excluding trolley : 200 kN Weight trolley, motor, hook etc. : 50 kN Distance between centers of gantry rails : 12 m Minimum hook approach : 1.5 m Distance between centers of crane wheels : 4 m Span of gantry girder :7 m Weight of rail section : 0.5 kN/m

UNIT-IV

- 7. a) Explain various theorems of plastic analysis?
 - b) Describe collapse mechanisms of plastic analysis?

OR

8. a) Find out the fully plastic moment of given frame?

- b) Explain the concept of minimum weight design in plastic design of structures?
- 9. Find out the plastic moment of given frame by plastic moment distribution method.

10 Find out the plastic moment of given frame by combining mechanics method.

