Hall ⁻	Ticke	et Number : R14											
Code	Code: 4PA321												
M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016 Coding Theory and Techniques													
(DECS)													
Max. Marks: 60 Time: 3 Hours													
Ans	wer	all five units by choosing one question from each unit (5 x 12 = 60Marks) ***********************************											
UNIT-I													
1.	a)	Explain the fixed and variable length coding	4M										
	b)	Explain about Lempel-Ziv algorithm. And also apply the same for the following 11010011111001101101011111											
		OR											
2.	a)	State and explain the Shannon -Fano coding with an example	6M										
	b)	Apply Shannon –Fano coding procedure and also calculate the coding efficiency of the following data											
		$[X] = [X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8]$											
			6M										
3.		Consider the (7,4) linear block code whose generator matrix is given by											
Э.													
		$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$											
		$G = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$											
		$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$											
		i) find all the code words											
		ii) find the parity check matrix											
		iii) compute the syndrome for the received vector 1001001 is a valid code word or not	2M										
		OR	21V 1										
4.	a)	Explain about the Golay Codes with an example	8M										
	b)	List out the properties of Binary Golay codes UNIT-III	4M										
5.	a)	Design an encoder for the $(7,4)$ binary cyclic code generated by $g(x)=1+x+x^3$											
		and verify its operation using the message vector (0101)	6M										
	b)	·	6M										
6.	a)	OR Explain clearly about Syndrome Computation and Error detection	8M										
0.	а) b)		oivi 4M										
	D)	UNIT-IV	TIVI										
7.	a)	Explain the principle of convolution encoder for (3,1),convolution code with a											
		constant length of nine bits	6M										
	b)	-	6M										
0		OR Design a (2.4.2) Vitarbi decading for the received vector 7, 1101011001	ON 4										
8.		Design a (2,1,3) Viterbi decoding for the received vector Z=1101011001 1 UNIT-V	2M										
9.		Design (7.3) BCH Decoder for receiving vector at a receiver R=100001101111010110111 1	2M										
		OR											
10.	a)	· ·	6M										
	b)		6M										

Hall	licke	t Number :												R	R14
Code: 4PA322															
M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016															
High Speed Networks															
(DECS) Max. Marks: 60 Time: 3 Hours															
	-		s by cho	osino	a on	e au	estic	n fra	m e	ach	unit (
Answer all five units by choosing one question from each unit (5 x 12 = 60Marks)															
							NIT-I								
1.	a)	Explain clear networking.	ly with a re	eferer	nce m	nodel	why	there	shou	ıld be	a laye	ered are	chitectu	re for	6M
	b)	Mention and	d explain	vario	us ne	etwor	k me	echar	nisms	S.					6M
							OR	2							
2.	a)	Why is there	e a need t	for B	-ISDI	N? E:	xplai	n .							6M
	b)	Explain abo	ut three Is	SDN	stan	dard	char	nel t	ypes	in de	etail.				6M
	UNIT-II														
3.	a)	Define "Qua	ality of Se	rvice	". Ex	plain	on \	what	facto	ors qu	uality	of serv	vice of	ATM	
	·	depends.	•												6M
	b)	Mention the	application	ons c	of virt	ual c	hanr	els i	n AT	M ne	twork	S.			6M
							OR	2							
4.	a)	Explain abo	ut ATM a	dapta	ation	laye	r.								6M
	b)	Illustrate vai	rious serv	vices	of A	ΓM.									6M
						ſ	JNIT	-111							
5.	a)	With an exa	ımple, exp	olain	abou	ıt blo	cking	phe	nom	enon					6M
	b)	Write about	three sta	ge cl	os ne	etwor	k wit	h an	exar	nple.					6M
							OR	2							
6.		Explain abou	ıt the Rear	range	emen	t of ci	rcuit	using	Fold	ing al	gorith	n with	an exar	nple.	12M
						Ū	JNIT	-IV							
7.	a)	Explain abo	ut addres	sing	in A	ΓМ.									6M
	b)	What is sign	naling? W	rite a	bout	UNI	sign	aling	in A	TM N	letwo	rks.			6M
	·						OR	2							
8.		With an exa	ımple, exp	olain	abou	ıt PN	NI ro	uting	in A	TM r	netwo	rks.			12M
							UNIT	-v							
9.	a)	Compare To	CP and U	DP p	roto	_		رت							6M
	b)	Discuss and		•			cond	estic	n co	ntrol	mech	anism	S.		6M
	/						OR								
10.		Write short	notes on:				2-								
			networkin	g											
		` ,	rated ser	•	i .										12M
		` ,													

Hall 7	Ticke	et Number : R1	4									
Code	4P/	\323										
M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016												
		Micro Computer System Design										
		(DECS)										
		Marks: 60 Time: 3 Hours										
Ans	wer	all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)										
		UNIT-I										
1.	a)	Explain the BIU and EU of 8086 with neat block diagram?	6M									
	b)	Explain the following instructions with an example?										
		(i) ASCII adjust after addition.(ii) ASCI adjust after multiplication.	6M									
		OR	OW									
2.	a)	Draw and explain the complete architecture of 8086 microprocessor?	6M									
	b)	Explain the data copy/ transfer instructions with examples?	6M									
		UNIT-II										
3.		Explain the use of each following register of 80386. (i) Segment Descriptor Registers										
		(ii) Control Registers										
		(iii) Debug and Test Registers										
		(iv) System address registers	12M									
4.	a)	OR Enlist the major architectural advancements in 80486 over 80386?	8M									
٦.	b)	Enlist the data types supported by 80486?	4M									
	/	UNIT-III	1141									
5.	a)	Explain about model specific registers in Pentium 4 and core2 microprocessors.	8M									
	b)	Hyper Threading technology.	4M									
•	,	OR										
6.	a)	Explain the Model specific register of Pentium 4 and core2 microprocessors. Explain about the dual processors and hyper-threaded processors.	6M									
	b)	UNIT-IV	6M									
7.		Assume that the four jobs A,B,C, and D, none of which involves I/O activity, are										
		to be executed and their execution times are 60,20,40and 10 minutes,										
		respectively. Given that all of the jobs are submitted to the system at the same										
		time and in the order indicated in the proceeding sentence: a) Determine the average turnaround time if these jobs are executed serially in										
		the order specified.										
		b) Determine the average turnaround time under a non-prioritized time sharing										
		system. Turnaround time for a job is defined as the time between the job being	12M									
		submitted and the job being completed. OR	I ZIVI									
8.	a)	Draw and explain the structure of prioritized ready queue.	6M									
	b)	What is memory fragmentation? How can it be reduced?	6M									
		UNIT-V										
9.	a)	Explain the internal structure of the 80X87 arithmetic coprocessor.	6M									
	b)	Explain the Transcendental Operations of coprocessor.	6M									
10.	a)	OR Write the coprocessor Control Instructions	6M									
10.	а) b)	Illustrates the multiple data types that can appear in any XMM register for various	OIVI									
	/	SSE instructions.	6M									

Hall ⁻	Γicke	t Number:													R	14
Code: 4PA324																
M.T	ech	. II Semeste		_			-							ıg/S	Sep 20	16
			Def	ect	ion	and			oitr	n of	Sig	nals	•			
Max	Ма	rks: 60					(DE	ECS)						Tim	ne: 3 Ho	ni irs
		er all five un	its by	/ chc	osin	g on	e qu	estic	n fro	m e	ach i	unit (5 x 12 =			7013
							****	****	$\overline{}$							
							UI	NIT-I								
1.	a)	Explain the										_				6M
	b)	State and p				•	•						r Transfo	orm		21.4
		i) Differentia	ition	ın tım	ne do	maıı	1 II) C			n pro	pert	y				6M
0	۵)	Determine t	ь a Г	a		. af a	£	OF			:	اما				
2.	a)	Determine t i) $x(n)=$								_	igna	IS				6M
	b)	Determine	•	, ,	,	,	` ,	` '	•	,	se re	snor	nse of t	he ·	svstem	Olvi
	D)	$y(n) = \frac{1}{2} (x(n))$					agiiii	uuo	ana	priac	00 10	орог	100 01 0	110	oyotom	
		Z (**)	,	(-12											6M
								UNIT	[-II]							
3.		What is the	det	ectio	n pro	bler	n in	a cc	mmı	ınica	tion	mod	el and e	expl	ain the	
		Neyman- pe	earso	n crit	terior	n for	the c	detec	tion o	of a s	igna	l .				12M
								OR	_							
4.		Explain the	multi	ple h	ypot	hese	s tes	sting	for th	e de	tectio	on of	a signal	1.		12M
								UNIT	-111							
5.		Discuss abo	out m	atch	ed fil	ter c	hara	cteris	tics ı	used	for ra	adar	applicat	ions	3.	12M
								OF	₹							
6.		Explain the p	perfo	rman	ce of	the	detec	tor in	case	e of b	inary	and	Multiple	ary	case.	12M
							ſ	UNIT	-11/							
7.		Explain the	nerf	orma	nce	of a	_			lihod	nd ra	tio te	ests for	larc	ıe data	
,.		records	роп	011110		o. g	01101	u1120	a)III 10 C	<i>,</i>		0010 101	iaig	o data	12M
								OF	₹							
8.		Explain the E	Baye:	sian a	appro	ach	of hy	pothe	esis t	estin	g for	the d	etection	of s	ignals.	12M
								UNIT								
9.		What are th	na ch	narac	taric	tice	_		$\overline{}$	tor s	and h)OW	tha wiar	ner	filtar is	
٥.		used for the						WICI	101 111	itoi e	iiiu i	IOVV	tile wiel	ici	ilitor is	12M
						J		OF	₹							
10.		What is an	ada	ptive	filte	r? E	xplai	n the	e ste	epes	t de	scen	t algoritl	hm	for the	
		stability.														12M

		PA325	14
		n. II Semester Regular & Supplementary Examinations Aug/Sep 201	6
771.7	0011	Image and Video Processing	O
		(DECS)	
		arks: 60 Time: 3 Ho	urs
A	Answ	ver all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)	
		UNIT-I	
1.	a)	Explain the fundamental steps in digital image processing.	6M
	b)	Explain the Image formation model.	6M
		OR	
2.	a)	Derive the Haar Transform kernel matrix for N=4.	6M
	b)	State and prove the following properties of 2-D DFT i) Rotation ii) Frequency Translation	6M
		UNIT-II	
3.	a)	Explain Histogram equalization and Histogram specification	7M
	b)	Assume that the input gray levels have the PDF as $p_r(r) = -2r + 2$ for $0 \le r \le 1$ = 0 otherwise	
		Show that the output PDF i.e $P_s(s)=1$	5M
		OR	
4.	a)	Explain about smoothing and sharpening filters in spatial domain.	6M
	b)	Explain about basic filtering in frequency domain.	6M
	,	UNIT-III	
5.	a)	How to diagonalize a circulant matrix. Explain the diagonalization of a circulant matrix with an example	8M
	b)	Discuss about image restoration and degradation model	4M
	υ,	OR	
6.	a)	With the help of relevant expressions, explain degradation model used for image restoration	6M
	b)	Explain about noise modeling, based on distribution function	6M
	D)	UNIT-IV	Olvi
7.	a)	What are the different types of objective measures of Image Compression	6M
	b)	The original image and reconstructed image are given below. Calculate the MSE(mean square error)	
		$\begin{bmatrix} 1 & 8 & 6 & 6 \end{bmatrix}$ $\begin{bmatrix} 2 & 8 & 8 & 7 \end{bmatrix}$	
		$Original \text{ Im } age = \begin{bmatrix} 1 & 8 & 6 & 6 \\ 6 & 3 & 11 & 8 \\ 8 & 8 & 9 & 10 \\ 9 & 10 & 10 & 7 \end{bmatrix} \text{Re } constructed \text{ Im } age = \begin{bmatrix} 2 & 8 & 8 & 7 \\ 6 & 3 & 12 & 8 \\ 5 & 4 & 9 & 1 \\ 15 & 9 & 11 & 9 \end{bmatrix}$	
		8 8 9 10 Reconstructed in age 5 4 9 1	
		$\begin{bmatrix} 9 & 10 & 10 & 7 \end{bmatrix}$ $\begin{bmatrix} 15 & 9 & 11 & 9 \end{bmatrix}$	6M
		OR	
8.	a)	Explain about Hough Transform	6M
	b)	Discuss about various Thresholding Techniques in image processing	6M
_	,	UNIT-V	
9.		State the conditions on spatio-temporal image intensity and velocity under which the optical flow equation can be used for displacement estimation. Why	
		we do need the small motion assumption	12M
		OR	. —
10.		Explain the various applications of motion estimation in video coding.	12M

Hall T	icke	et Number :													F	R14
Code: 4PB324																
M.Tech. II Semester Regular & Supplementary Examinations Aug/Sep 2016 DSP Processors and Architectures																
		100											SICUI			
Max.	Ма	rks: 60	111111	OH	o DE	C3 L	_1110	eaa	eu s	ysic	1115 6	x VL	וטטונ		ne: 3 Ho	ours
		er all five un	its by	/ cha	oosin	g on				m e	ach	unit (5 x 1	2 = 60)Marks)	

1. a) Perform an implementation for an 8-point DIT FFT algorithm which includes												es				
	,												8M			
	b)	Explain Dynamic Range and precision in Detail											4M			
		OR														
2.		Differentiate	Α/ Γ) Co	onver	sion	erro	ors a	ınd [D/A	Conv	ersic	n er	rors r	elevant	to
		computation	nal ad	ccura	acy in	DSI	P app	olicat	ions.							12M
								UN	IT-II							
3.		Explain the		ures	for e	exter	nal i	nterfa	acing	j in d	conn	ectio	n witl	h prog	ırammab	
		DSP device	S.													12M
									R							
4.	a)	With suitable DSP devices		ample	е ехр	lain	the o	data	addre	essin	g ca	pabili	ties f	or pro	grammal	ole 8M
	b)	What is Bra		ultin	liar?	Evn	lain /	1 Y // F	Rraur	n mul	tinlic	ır				4M
	D)	What is bia	uii iii	uitip	1161 :	LXP	- Iaiii			HIII	прпс	· I				7101
_									IT-III		-> 4> 4					
5.	a)	Explain the				_									etail.	8M
	b)	WAP to imp	leme	nt P	ID co	ntrol	ller o			0C54	XX p	oroce	ssor.			4M
•		\\ \	· · · · · ·			(A 4 6)R	/\/ ·-						4014
6.		What are di	Tere	nt int	errup	is oi	TIME	5320	C547	хх рі	oces	ssor?	Expi	ain the	em.	12M
								UNI	T-IV							
7.	a)	Explain abo	ut Ac	dapti	ve filt	ers i	n det	tail.								4M
	b)	Discuss abo	out Bi	it- re	verse	ed ge	enera			tail.						8M
									R							
8.		Describe the			of e	rror 1	for e	valua	ating	the c	comp	utatio	onal a	accura	cy in DS	
		implementa	แดกร	•												12M
								UN	IT-V							
9.		With suitable DSP devices	•	gram	expl	ain th	ne co	ncep	t of r	nemo	ory in	iterfa	cing	to pro	grammak	ole 12M
		DOF devices	,					0	R							12111
10.	a)	Explain the i	mem	orv s	nace	oras	niza			oram	mah	le DS	SP de	vices	with simr	nle
10.	۵)	example		J. J. J	₂ 400	5. gc	<u>-</u> u		più	gran		50				8M
	b)	Explain a Co	ODE	C Int	erfac	e circ	cuit v	vith it	s ne	cessa	ary p	rogra	mmir	ng by o	consideri	ng
		an example.														4M
