Code: 5GC11 R-15
I B. Tech. I Semester Regular Examinations Dec/Jan 2015/2016
English through Literature
(Common to All Branches)
Max. Marks: 70Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Describe the first meeting of Mini and Abdul Rehman, Cabuliwallah 7M
b) What road did the poet choose? Does he regret his choice? 7MOR
2. Describe the life of Cabuliwallah. 14M
UNIT-II
3. What kind of life the dog leads from its childhood to adulthood in Mark Twain is "A dog's tale"? 14 M
OR
4. a) What is the message presented in the poem 'If' by Rudyard Kipling? 7M
b) What is the contribution of Sudha Murthy towards society? 7M
UNIT-III
5. What sacrifice do Della and Jim make for each other? 14MOR
6. Why is Dr. Vijay Bhatkar referred to as the architect of India's Information technological revolution? 14M
UNIT-IV
7. Describe the astrologer's meeting with the stranger. What challenge they throw to each other? 14M
OR
8. Give a detailed account of J.C Bose's life at Presidency College. 14M
UNIT-V
9. What developments did Homi Jehangir Bhabha make towards nuclear programme? 14M
OR
10. What is the central theme of the play "The Proposal" by Anton Chekov? 14M

Code: 5GC12

| B. Tech. I Semester Regular Examinations Dec/Jan 2015/2016
$\begin{gathered}\text { Engineering Chemistry }\end{gathered}$
(Common to CE, ME, CSE \& IT) \quad Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) What is the principle of EDTA Method? Describe the estimation of hardness of
water by EDTA method
b) With the help of neat diagram, explain the use of zeolite process for softening
of water and its limitations.

OR
2. Discuss the various boiler troubles, their causes and prevention.

UNIT-II

3. a) What are fuel cells? Describe the working principle of methanol-oxygen fuel
cell with reactions.
b) Describe the construction lead-acid battery with the reactions occurring during
discharge.

OR
4. a) What is electrochemical corrosion? Explain electrochemical theory of corrosion, 7M
b) How is corrosion prevented by sacrificial anodic protection and cathodic
protection? Explain.

UNIT-III

5. a) How the following are produced?
(i) Buna-S, (ii) Polyurethane. Mention their properties and uses.

7M
b) Explain with examples the terms: addition polymerisation, copolymerisation
and condensation polymeristaion.

OR

6. a) Distinguish between thermoplastic and thermosetting polymers or resins. 7M
b) Discuss briefly the process of vulcanization of rubber. 7 M

UNIT-IV

7. a) A sample of coal containing $92 \% \mathrm{C}, 5 \% \mathrm{H}, 3 \%$ ash. When this coal was tested in the laboratory for its calorific value in the bomb calorimeter, the following data were obtained
Weight of coal burnt $=0.95 \mathrm{gms}$
Weight of water taken $=700 \mathrm{gms}$
Water equivalent weigh of bomb calorimeter $=200 \mathrm{gms}$
Rise in temperature $=2.48^{\circ} \mathrm{C}$
Cooling correction $=0.02^{\circ} \mathrm{C}$
Fuse wire correction $=10.0 \mathrm{Cal}$
Acid correction $=60.0 \mathrm{Cal}$
Calculate the net and gross calorific values of the coal in Cal/g. (Assume the latent heat of condensation of steam as $580 \mathrm{cal} / \mathrm{gm}$)
b) Explain the analysis of flue gases by Orsat's apparatus. 7M

OR
8. a) Explain the Fishcer - Tropsch's method of synthesis of petrol.

$$
\begin{aligned}
& \text { b) A sample of coal was found to contain the following constituents. } \mathrm{C}=81 \% \text {, } \mathrm{O} \\
& =8 \%, \mathrm{~S}=1 \& \mathrm{H}=5 \%, \mathrm{~N}=1 \% \text { and ash }=4 \% \text {. Calculate the minimum amount } \\
& \text { of air required for the complete combustion of } 1 \mathrm{Kg} \text { of coal. Also, calculate the } \\
& \text { percentage composition by weight of the dry products of combustion. Oxygen } \\
& \text { in air is } 23 \% \text { by weight. }
\end{aligned}
$$

UNIT-V

9. a) What is setting and hardening of cement? Explain various reactions involved in setting and hardening of cement.
b) Explain the classifications and characteristics of rocket propellants.
10. a) What is the composition of Portland cement? Describe manufacture of Portland cement with dry method.
b) What are lubricants? Write any three properties and applications of lubricants.

Code: 5GC14

I B. Tech. I Semester Regular Examinations Dec/Jan 2015/2016

Engineering Mathematics-I

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
b) Find the orthogonal trajectories of the family of $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1, \lambda$ is the parameter OR
2. a) Solve $x(x-y) d y+y^{2} d x=0$
b) A tank initially contains 50 gallons of fresh water. Brine containing 2 pounds per gallon of salt, flows into the tank at the rate of 2 gallons per minute and the mixture kept uniform by stirring, runs out at the same rate. How long will it take 7 M for the quantity of salt in the tank to increase from 40 to 80 pounds?

UNIT-II

3. a) Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=e^{3 x}+\sin x+x^{2}$
b) Solve $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$ by the method of variation of parameters

OR
4. a) Solve $\left(D^{3}-5 D^{2}+7 D-3\right) y=e^{2 x} \operatorname{Cosh} x$
b) In an $L-C-R$ circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=1 / L C$. Find the current i

UNIT-III

5. a) Solve $\left(1-x^{2}\right) y^{\prime \prime}+2 y=0$ by series method with $y(0)=4, y^{\prime}(0)=5$
b) Verify Rolles mean value theorem on $[a, b]$ for the function $f(x)=(x-a)^{m}(x-b)^{n}, m, n$ are positive integers.

7M

OR

6. a) Solve in series of $9 x(1-x) \frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+4 y=0$
b) Verify Taylors theorem for $f(x)=\log (1+x)$ with Lagranges form of remainder upto 2 terms in the interval $[0,1]$

UNIT-IV

7. a) If $z=f(x+c t)+\phi(x-c t)$ then prove that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$
b) Find the maxima and minima of $f(x, y)=x^{3} y^{2}(1-x-y)$

OR
8. a) Let $r^{2}=x^{2}+y^{2}+z^{2}$ and $V=r^{m}$ then prove that $V_{x x}+V_{y y}+V_{z z}=m(m+1) r^{m-2}$
b) Find the maximum and minimum distances of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=4$

UNIT-V

9. Trace the curve $y^{2}(x-a)=x^{2}(x+a)$
10. Trace the curve $r^{2}=a^{2} \cos 2 \theta$

I B. Tech. I Semester Regular Examinations Dec/Jan 2015/2016 Mathematical Methods-I
(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Find the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0\end{array}\right]$

7M
b) Find the values of ' k ' for which the system of equations
$(3 k-8) x+3 y+3 z=0 ; \quad 3 x+(3 k-8) y+3 z=0 ; \quad 3 x+3 y+(3 k-8) z=0$
has a non-trivial solution
OR
2. a) Find the values of ' a ' and ' b ' for which the equations
$x+a y+z=3 ; \quad x+2 y+2 z=b ; \quad x+5 y+3 z=9$
are consistent, when will these equations have a unique solution?
b) Find whether the following equations are consistent and if possible find the solutions $x+2 y+3 z=16 ; x+y-3 z=-9 ; x-2 y+2 z=8$

UNIT-II

3. a) If λ is an eigen value of a non-singular matrix A, show that $\frac{|A|}{\lambda}$ is an eigen value of the matrix $\operatorname{adj} A$
b) Using Cayley-Hamilton theorem, find the inverse of $A=\left(\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$

OR

4. Define a modal matrix. Diagnolize the matrix $A=\left(\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right)$

UNIT-III

5. Reduce the quadratic form $3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ to the canonical form. Find index and signature

OR
6.

Show that $A=\left(\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right)$ is a Skew-Hermitian matrix and also unitary. Find eigen values and the corresponding eigen vectors of A.

UNIT-IV

7. a) Find a real root of the equation $x e^{x}=2$ using false position method
b) Evaluate $\sqrt{28}$ to four decimal places by Newton-Raphson method

OR

8. a) Find a root of the equation $x^{3}-4 x-9=0$, using the bisection method
b) Find a real root of the equation $3 x=\cos x+1$, using Newton-Raphson method

UNIT-V

9. a) Using Newton's forward interpolation formula, find the value of $f(0.25)$ if

$\mathrm{x}:$	0.1	0.2	0.3	0.4	0.5
$\mathrm{f}(\mathrm{x}):$	9.9833	4.9696	3.2836	2.4339	1.9177

b) Find the polynomial $f(x)$, by using Lagrange's formula and hence find $f(3)$ for

$x:$	0	1	2	5
$\mathrm{f}(\mathrm{x}):$	2	3	12	147

10 a) The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration using the entire data :

Time t (sec) :	0	5	10	15	20
Velocity V (m/sec):	0	3	14	69	228

b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Simpson's $3 / 8^{\text {th }}$ rule
Hall Ticket Number : R-15
Code: 5G111
I B. Tech. I Semester Regular Examinations Dec/Jan 2015/2016

Problem Solving Techniques and Introduction to C Programming

Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I1. a) Explain software development method with suitable example.10M
b) Draw flowchart for factorial of a number. 4M
OR2. a) What is an algorithm? Explain the properties of an algorithm and write analgorithm to find whether a number is even or odd.7M
b) What is flowchart? Describe various symbols used in flowcharts and draw flowchart for reversing the digits of a given number. 7M
UNIT-II
3. a) Define a variable. What are the rules used in naming a variable? Give examples. 5M
b) What is data type? Explain basic data types and their sizes used in a C Language. 9M
OR
4 a) What is type conversion? Explain about implicit and explicit type conversion with suitable examples. 8M
b) Define constant. Explain different types of constants used in c language with examples. 6M
UNIT-III
5 a) Define nested loop. Write a c program to print the following pattern.
12345

$$
12345
$$

$$
12345
$$ 5M

b) Write a c program to print the following pattern using while, do-while and for loop.
1

$$
12
$$

$$
123
$$

$$
1234
$$9M

OR
6. a) Explain if, if-else, nested-if and else-if-ladder with suitable examples. 10M
b) Explain goto statement with suitable example program. 4M
UNIT-IV
7 a) Write a c program to read one matrix and find the sum of its diagonal elements. 8M
b) What is string? Describe at least six string handling functions with suitable examples. 6M
OR
OR
8 a) Define an array. Write a c program to perform matrix multiplication on two 3×3 matrices. 7M
b) Define string. Write a c program to find whether the given string is palindrome or not. 7M
UNIT-V
9 a) Write a c program to swap two numbers using call by value and call by reference. 9M
b) What is library function? Explain about any five-library functions. 5M
OR
10 a) Write a short note on macros. 6M
b) What is user defined function? Describe different categories of user defined functions with suitable examples. 8M

Code: 5G513a

I B. Tech. I Semester Regular Examinations Dec/Jan 2015/2016 Engineering Drawing-I
 (Common to EEE \& IT)
 Time: 3 Hours
 Max. Marks: 70
 Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Bisect an angle of 45°
b) Construct a hexagon of sides 45 mm , using general construction method. 10M

OR

2. a) Divide a line $A B$ of 90 mm in to ten equal parts
b) Construct a pentagon of sides 45 mm , using general construction method.

UNIT-II

3. Construct a parabola, with the distance of the focus from the directrix as 45 mm . Also, draw a normal and tangent to the curve at a point 40 mm from the directrix.

OR

4. Construct an ellipse, with distance of the focus from the directrix as 50 mm and eccentricity as $2 / 3$. Also find the normal and tangent to the curve at a point 70 mm from directrix.

UNIT-III

5. A circle of 40 mm diameter rolls on a horizontal line for one revolution, clock wise. Draw the locus of a point on the circle. Also, draw a tangent and a normal to the curve at a point 35 mm from the directing line.

OR

6. Draw a hypo-cycloid of a circle of 40 mm diameter, which rolls inside on another circle of 160 mm diameter for one revolution in counter clock-wise direction. Draw a tangent and a normal to it at a point 65 mm from the centre of the directing circle.

UNIT-IV

7. a) A point Q is 45 mm from both the principal planes of projection. Draw its projections.
b) A point A is 15 mm above HP and 20 mm in front of VP. Another point B is 25 mm behind VP and 40 mm below HP. Draw the projections $f A$ and B, keeping the distance between the projectors equal to 90 mm . Draw straight lines, joining (i) the top views and (ii) the front views.

OR
8. a) A line $A B$, of 25 mm long is perpendicular to HP and parallel to VP. The end points A and B of the line are 35 mm and 10 mm above HP respectively. The line is 20 mm in front of VP. Draw the projections of the line.
b) A line $A B$ is 30 mm long and inclined at 30° to HP and parallel to VP. The end A of the line is 15 mm above HP and 20 mm in front of VP. Draw the projections of the line.

UNIT-V

9. A line $A B$ of 75 mm long is inclined at an angle of 40° to HP and 40° to VP. One end of the line is 25 mm above HP and 30 mm in front of VP. Draw its projections.

OR

10. A line $A B$ of 80 mm long has its end $A, 15 \mathrm{~mm}$ from both HP and VP. The other end B is 40 mm above HP and 50 mm in front of VP. Draw the projections of the line and determine the inclinations of the line with HP and VP.
