Hall Tic	ket Number :														R14
Code:	4P2B22														
1	M.C.A. II Ser	nest	er S	Supp	olen	nen	tary	Exa	imin	atic	ons .	lanud	ary 2	2016	
			Bu	usin	ess	Dat	a Pi	OCe	essi	ng		-		0.11	
-	x. Marks: 60 ver all five unit	s by	cho	osina	a on	e au	estic	n fro	om e	ach	unit			3 Hou 50Mark	
		,				****	****								,
1. a)	Explain rules	in for	mino	the i	data		NIT-I	 ider	ntifies	s of (COB	OL with	ı exar	noles	
,								6M 6M							
OR															
2. a)	2. a) Write about structure of COBOL program								6M						
b)	How files car	n be a	assig	Ined	to de			Ĺ.	ו in c	letail					6M
3. a)	Explain arith	netic	: verl	hs of	COF		NIT-II Den		trate	all o	f the	m with	n an e	xampl	e
0. uj	program.	notic		00 01	001	JUL.	2011		liato					Marriph	6M
b)								o mo	dify a	a pre	detei	mined	sequ	lence	
	of operations	- Its	synt	ax ar	nd a	-	ram DR								6M
4. a)	Narrate sign	ificar	nce o	of W	orkir			e se	ction	witl	n its	differe	ent le	evels c	of
	declarations.					-	_								6M
b)	Various form with simple e			tater	nent	with	diffe	erent	con	ditior	ns us	sed wit	th it.	Explai	n 6M
	with simple e	латт	5163.				IIT-III	n I							OW
5. a)	Significance	of Ju	stifie	d an	d Sig				ЮВС	DL.					6M
b)	Report the di	ffere	nt foi	rms c	of Pe	rform	n stat	eme	nts w	/ith s	yntax	ĸ			6M
							OR								
6. a)	How to split t multiple data			strin	g inte	o mu	ltiple	data	a nar	nes a	and h	now to	conc	atenat	e 6M
b)	Explain array				•	•		•	•		•				of 6M
			ive li	nps e	acn.	<u> </u>	IT-IV		5 111			liectioi	i iiiai	ıy.	OIVI
7. a)	Explain the c	once	pt of	writi	ng, r				datir	ig a s	sequ	ential f	ile.		6M
b)	Merge staten	nent	in file	e pro	cessi	ing.									6M
							OR								
8. a)															6M
b)	Theoretically	dem	onst	rate	Sorti				files	with	samp	ole dat	a.		6M
9. a)	Sort out the b	benef	its o	f CO	BOL		IIT-V								6M
b)						•		•	mple	exa	mple				6M
,		•					OR		•		•				
10. a)	Explain the c	ontex	kt of	using	g CO	PY a	ind C	ALL	state	emer	its.				6M
b)	Importance o	of sub	orouti	ines	and p		ng p **	aram	eters	S.					6M
							•								

ket Number : R14	
P0C02	
ver all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)	
using the Taylor series expansion about 2^{xim} . Use the expansion to appropriate	
(0.05) and bound the truncation error.	6
Priefly explain the Secont method	6
	6
Briefly explain the Newton-Raphson method.	6
Find the root of the equation 5 5 1 = 0 by using Bisection method.	6
Solve the equations ¹⁶ ¹¹⁶ ¹⁶ 6, 3, ¹¹⁷ 3 ⁻¹ 4 ⁻¹ 20 ⁻⁵⁰¹⁰⁰ ¹¹⁷ 3 13	
by using Gauss elimination method. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	6
Find the largest Figen value of the matrix 2 ² using Dewer method	C
Find the largest Eigen value of the matrix $\begin{bmatrix} 1\\ 3 \end{bmatrix} = \begin{bmatrix} 1\\ 3 \end{bmatrix}$ by t	6
OR	
Solve the equations 2 3 $9,3 = 9,3 = 2^*,3 = 6$	
	6
Find the olution to three als fitnes sten 83° 11° 4° 95,	
	6
Fit a function of the form $y = ax^{-1}$ to the following data	
X 2 4 7 10 20 40 60 80	~
y432518138532Fit a function of the form 12 <td< td=""><td>6</td></td<>	6
$\frac{1}{y} = A^{1}e^{-y} + \frac{3}{A^{2}e^{-y}}$	
x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 y 1.54 1.67 1.81 1.97 2.15 2.35 2.58 2.83 3.11	6
y 1.54 1.67 1.81 1.97 2.15 2.35 2.58 2.83 3.11 OR	6
y 1.54 1.67 1.81 1.97 2.15 2.35 2.58 2.83 3.11	6
	P2C23 A.C.A. II Semester Supplementary Examinations January 2016 Numerical Methods Marks: 60 Time: 3 Hours er all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks) UNIT-I Obtain a second degree polynomial approvement of $(1 + 4, 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 1)$ using the Taylor series expansion about $\frac{1}{2}$ ation to $(1 + 4, 6, 0, 1)$ Solve the equations $\frac{1}{2}$ ation to $\frac{1}{2}$ ation $\frac{1}{2}$

Production (in Crore tons)	55	56	58	59	60	60	62
Expotrs (in Crore tons)	35	38	38	39	44	43	45

12M

12M

UNIT-IV

Find the Value of (5) by using Newton's Forward formula for the following table 7. 161.

ay com	1	1.4	1.8	2.2					
r(x)	3.49	4.82	5.96	6.5					
OR									

Find the Value of) by using Gauss Backword formula for the following table 8.

1032	25	30	35	40
$\frac{1}{2} \frac{1}{2} \frac{1}$	0.2707	0.3027	0.3386	0.3794

UNIT-

e the differential equation $\frac{1}{2} = \frac{1}{2}$ ubject to the condition $\frac{1}{2} = 1$ when $\frac{1}{2} = 0$ by using Picard's method or successive approximation. 9. a) 6M

b) Solve the differential equation $\frac{1}{y} = 1$ by using $\frac{1}{y} = 1$ by using Euler's Method. 6M

UK Sing Ringe-Kutta hod of r 4, find 0.2,0.4,(that $u'_{y'} = 1 + \frac{1}{y},$ where u = 0 when u' = 0.5 continue the solution at 1.6 and 0.8 given line's method. 10. 12M

r		,		,	1		,			
Hall T	icket Number :								R1	4
Code:	4P2C24									
	M.C.A. II Serr	neste	r Supi	oleme	entar	y Exami	nation	s Januarv	2016	
						lesearc		/		
	ax. Marks: 60		-						e: 3 Hours	
Ans	wer all five units	s by cl	hoosin	-	quest		each ui	nit (5 x 12 =	= 60Marks)	
				ſ	UNIT-					
1. a)	Solve the followi	na LPf	P bv Sir	ے r xelan						
- /	$Min \ z = 8 X_1 - 2 X_2$	•	- 7 -	1 -						
	subject to $-4X$		≤ 1							
	5.	$X_1 - 4X_2$	$X_2 \leq 3$							
		X_1, L	$X_2 \ge 0$							6M
b)	Solve by Using F	Penalty	y metho	d to						
	$Max \ z = 3 X_1 + 2$	-								
	subject to $2X_1$		£ 2							
	$3X_{1}$	$+4X_{2}$	≥12							
		X_{1}, Z_{2}	$X_2 \ge 0$							6M
					OR					
2.	Solve by Using t	wo pha	ase sim	plex m	ethod	to				
	<i>Min</i> $z = -2X_1 -$	X_{2}								
	subject to X_1	$+ X_{2}$	≥2							
	X_1	$+X_2 \leq$	≤4							
		X_{1}, Z_{2}	$X_2 \ge 0$	_		_				12M
					UNIT-					
3.	Three warehous	es sup	ply five	stores	. The T	able indica	ates the c	cost of shipm	ent per unit	
	between wareho					-		-		
	stores. However house A to store		-	•		•	•	•		
	Within these limi									
				arehou	-					
			А	В	С	Requiren	nent			
		1	2	4	6	75				
		2	3	8	7	345				
	Store	3	4	3	8	180				
		4	4	6	3	90				
	0	5	2	6	5	210				1014

- 4. a) Explain the difference between a transportation problem and an assignment problem? 6M
 - b) A department has five employees with five jobs to be performed. The time(in hours) each man will take to perform each job is given in the cost matrix

450

OR

850

300

Capacity

		Employees						
		I	П		IV	V		
	Α	10	5	13	15	16		
Jobs	В	3	9	18	13	6		
	С	10	7	2	2	2		
	D	7	11	9	7	12		
	E	7	9	10	4	12		

How should the jobs be allocated, one per employee, so as to minimize the total manhours?

6M

There are 4 jobs each of which has to go through the machines M_i,i=1,2,3,..., 6 in the order $M_1, M_2, M_3, \ldots, M_6$. Processing time are given

UNIT-III

	Machine(i)									
Job(j)	M ₁	M ₂	M ₃	M_4	M_5	M_6				
А	20	10	9	4	12	27				
В	19	8	11	8	10	21				
С	13	7	10	7	9	17				
D	22	6	5	6	10	14				

Determine a sequence for these four jobs which minimizes the total elapsed time T. 12M OR

6. A machine job has four machines A,B,C and D. Two jobs must be processed through each of these machines. The time(in hours) taken on each of the machines and the necessary sequence of jobs through the shop are given

	-		-			
Job 1	Sequence	А	В	С	D	Е
500 1	Time in hrs.	2	4	5	1	2
Job 2	Sequence	D	В	А	С	В
JUD 2	Time in hrs.	6	4	2	3	6

Find the total minimum elapsed time.

5.

UNIT-IV

7. The following failure rates have been observed for a certain type of light bulbs

Week	1	2	3	4	5
% failed by the end of week	10	25	50	80	100

There are 1,000 bulbs in use, and it costs Rs 2 to replace an individual bulb which has burnt out. If all bulbs were replaced simultaneously it would cost 50 paise per bulb. It is proposed to replace all bulbs at fixed intervals of time, whether or not they have burnt out, and to continue replacing burnt out bulbs as and when they fail. At what interval should all the bulbs be replaced? At what group replacement price per bulb would a policy of strictly individual replacement become preferable to the adopted policy?

OR

- 8. a) Define i) Mixed Strategy ii) Two person zero sum game iii) Pay of matrix
 - b) Solve the following game by using the principle of dominance

			F	Playe	r B		
		Ι	2	3	4	5	
	1	2	5	10	7	2	
Player	2	3	3	6	6	4	
А	3	4	4	8	12	1	
	(IT-V				-

9. An item is produced at the rate of 50 items per day. The demand occurs at the rate of 25 items per day. If the setup cost is Rs.100 per setup and holding cost is Re. 0.01 per unit of item per day, find the economic lot size for one run, assuming that shortages are not permitted. Also find the time of cycle and minimum total cost for one run.

OR

A Contractor undertakes to supply diesel engines to a truck manufacturer at the rate of 25 10. per day. He finds that the cost of holding a completed engine in stock is Rs. 16 per month, and there is a clause in the contract penalizing him Rs. 10 per engine per day late for missing the scheduled delivery date. Production of engines is in batches, and each time a new batch is started there are setup costs of Rs. 10,000. How frequently should batches be started, and what should be the initial inventory level at the time each batch is completed?

12M

12M

12M

6M

6M

Code: 4P2A25

M.C.A. II Semester Supplementary Examinations January 2016 Organization Structure and Personnel Management

Max. Marks: 60

Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks) ******

UNIT-I

- Why is the systems approach to management more appropriate today? 1. a)
 - What are the four approaches regarding the concept of social responsibility of b) business?

OR

- 2. a) What is Leadership? How is it an important managerial input?
 - b) What is organization? What are its implication? What is the importance of organizing?

UNIT-II

- What is personnel management? Explain the objectives of personnel management? 3. a)
 - Briefly explain the decision process approach to Management b)

OR

- Explain the position of the personnel department in the organization. 4. a)
 - Explain the role of system in decision making. b)

UNIT-III

- Explain the procedure of recruitment of a company. 5. a)
 - b) What is the difference between training and development?

OR

- 6. a) What are the steps in the selection process?
 - b) What type of interviewing is used in staff selection?

UNIT-IV

- 7. a) Define communication and discuss its importance in managing an organization?
 - Examine the barriers to effective communication? b)

OR

- 8. a) What is perception?
 - b) What precautions should be taken by a communicator to make his advice effective?

UNIT-V

- Briefly explain about People Capability Maturity Model (PCMM) levels, 9. a)
 - b) Explain balanced score card

OR

- 10. a) Briefly explain about Six Sigma.
 - b) What is Performance management?

Hall Ticket Number : R14 Code: 4P2B26 M.C.A. II Semester Supplementary Examinations January 2016 Data Structures Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 12 = 60Marks) ********* UNIT-I 1. a) Explain the fundamentals of Data Structures? What are Linear and Non linear data structures? Give two examples of each.	6M
Data Structures Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 12 = 60Marks) ********* UNIT-I 1. a) Explain the fundamentals of Data Structures? What are Linear and Non linear data structures? Give two examples of each.	6M
Data Structures Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 12 = 60Marks) ********* UNIT-I 1. a) Explain the fundamentals of Data Structures? What are Linear and Non linear data structures? Give two examples of each.	6M
 Answer all five units by choosing one question from each unit (5 x 12 = 60Marks) UNIT-I 1. a) Explain the fundamentals of Data Structures? What are Linear and Non linear data structures? Give two examples of each. 	6M
 a) Explain the fundamentals of Data Structures? What are Linear and Non linear data structures? Give two examples of each. 	6M
1. a) Explain the fundamentals of Data Structures? What are Linear and Non linear data structures? Give two examples of each.	6M
data structures? Give two examples of each.	6M
	6M
b) What is asymptotic notation? Show that the following equations are correct/incorrect?	
i. $2n^2 2^n + n \log n = (n^2 2^n)$ ii. $10n^2 + 9 = O(n)$	6M
OR	0
2. Explain about complexity of algorithm? Considering your own example analyze	I2M
complexity of recursive and non recursive algorithms?	2111
UNIT-II	
3. What is queue? Write any two applications of queues? Write an algorithm for	I2M
queue operations using linked list? OR	
4. a) What is hash table? Explain the functions of hash table.	6M
b) Convert the given Infix expression to Postfix expression using Stack and show	0111
the details of Stack at each step of conversion.	
Expression: $(a + b * c \wedge d) * (e + f / g)$.	
Note : ^indicates exponent operator.	6M
5. Write an algorithm for two way merge sort and analyze its complexity?	2M
OR	
6. a) What is the difference between linear and binary search techniques? Explain.	6M
b) Write a program in c/c++ for Fibonacci search.	6M

UNIT-IV

7. a) Differentiate Binary tree and Threaded binary tree and explain the storage representation of trees. For the given Binary Tree, perform Inorder, Preorder and Postorder traversal.

- What is hashing? Explain the various Collision resolution techniques? 8. a) 6M What is hash function? How hash functions are choosed? b) 6M UNIT-V How the graphs are represented? With an example explain the graph traversal 9. a) methods 6M b) Construct a Binary Search Tree from the given values. Consider the first value as the root value. Values: 45, 23, 29, 85, 92, 7, 11, 35, 49, 51 6M OR How are AVL trees better than BSTs? 10. a) 6M
 - b) What is Red-Black Trees? List its applications.